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Abstract

The real-time probabilistic simulation of quantum sys-
tems in classical computers is known to be limited by
the so-called dynamical sign problem, a problem lead-
ing to exponential complexity. In 1981 Richard Feyn-
man raised some provocative questions in connection
to the “exact imitation” of such systems using a special
device named a “quantum computer.” Feynman hes-
itated about the possibility of imitating fermion sys-
tems using such a device. Here we address some of his
concerns and, in particular, investigate the simulation
of fermionic systems. We show how quantum comput-
ers avoid the sign problem by reducing the complexity
from exponential to polynomial. Our demonstration is
based upon the use of isomorphisms of algebras. We
present specific quantum algorithms that illustrate the
main points of our algebraic approach.

1 Introduction

Because of recent exciting algorithms, like the factor-
ing algorithm of Shor [1] and the search algorithm of
Grover [2], that solve difficult problems on a quantum
computer using algorithms that would be impractical
on a classical computer, it is easy to overlook that the
original proposals for quantum computers were for the
purpose of solving quantum physics problems [3]. Peo-
ple like Feynman [3] focused on the extent to which
such a computer could imitate a specific physical pro-
cess, suggesting in part that quantum problems were
inherently too complex for a classical computer [3].
The obvious difficulty with deterministically solv-

ing a quantum many-body problem (of fermions or
bosons) on a classical computer is the exponentially
large basis set needed (i.e., the dimension of its Hilbert
space grows exponentially with the number of de-
grees of freedom). Exact diagonalization approaches
(e.g., the Lanczos method) suffer from this exponen-
tial “catastrophe”. Viewed the other way around,

this basis set scaling is what restricts today’s classical
computer to simulating only small quantum comput-
ers. This point seems indisputable, but should not be
taken as proof that quantum systems cannot be simu-
lated on a classical computer. By the same token, the
recent claims [4] that quantum computers can simu-
late all quantum systems efficiently lacks explicit and
detailed algorithms for specific problems, and lacks a
generic model of quantum computation including the
unitary maps (quantum gates) that can be physically
implementable. Even if a quantum computer existed,
some interesting quantum problems, such as finding
the ground state of a general quantum Hamiltonian,
do not yet have efficient quantum algorithms. Finding
such a quantity for small systems is relatively routine
on a classical computer.
Feynman in fact analyzed two alternatives for sim-

ulating physics with computers [3]. One uses a prob-
abilistic classical computer that would produce from
the same input as given to a physical system the same
distribution of outputs as observed for the physical
system. The other uses a computer constructed of
distinctively quantum mechanical elements that obey
the laws of quantum mechanics. This latter proposal
is the quantum computer.
To the question, “Can quantum systems be proba-

bilistically simulated by a classical computer?”, Feyn-
man’s answer was unequivocally “No.” 1 This an-
swer is surprising for even at that time some quantum
systems were being very successfully simulated proba-
bilistically on classical computers, mainly by quantum
Monte Carlo (QMC) methods [5]. To the question,
“Can quantum systems be simulated with a quantum
computer?”, his answer was a qualified “Yes.” He be-
lieved almost certainly that this could be done for a
system of bosons but was unsure that it could be done
for a system of fermions. In this paper we present a
design for a universal quantum computer that will sim-
ulate a system of fermions. Before doing so, we first

1There is as yet no mathematical proof that this is the correct
answer.
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discuss some problems that can be solved by a proba-
bilistic simulation of a quantum system on a classical
computer and others that cannot.

Probabilistic simulations of quantum systems on
a classical computer are mainly performed with the
use of the Monte Carlo method. These statistical ap-
proaches were introduced to overcome the difficulty
of exponentially growing phase spaces by numerically
evaluating the accompanying many-dimensional inte-
grals by sampling from a function assumed to be non-
negative. On a classical computer one can probabilis-
tically simulate a quantum system like liquid He4 [6]
and produce results that accurately compare with ex-
periment. The situation, however, is far from satisfac-
tory. An unsatisfactory state of affairs results from the
frequent breakdown of the non-negativity assumption
and is called “the sign problem.” The sign problem is
manifested by the seemingly exponentially hard task of
estimating the expectation value of an observable with
a given error. Interestingly, Feynman’s negativism
about quantum systems being probabilistically simu-
lated by classical computers was a claim that negative
probabilities were unavoidable because of the “hidden
variable” problem and the possible violation of Bell
inequalities. The extent to which the sign problem
is a hidden variable problem is unclear. On the other
hand, QMC methods do not faithfully adhere to Feyn-
man’s idea of a probabilistic computer. Two impor-
tant differences are that most QMC simulations are
non-local and performed in imaginary time. Feynman
discussed real-time simulations on a local computer.
Implications of these differences have been noted by
Ceperley [7] who suggests Feynman really argues just
against simulating quantum dynamics on a local clas-
sical computer. In any case, the known probabilis-
tic simulations on a classical computer clearly do not
qualify as a universally efficient computational scheme
for general quantum many-body problems. The lim-
iting factors, for whatever reasons, are negative or
complex-valued probabilities whether the simulations
are done in real or imaginary time.

To place the sign problem in a better perspective,
we will start with a real-time analysis of a collection
of interacting quantum particles. Quantum mechanics
tells us that these particles either obey Bosonic statis-
tics, whereby the wave function is symmetric with re-
spect to the exchange of the states of any two particles,
or obey Fermionic statistics, whereby the wave func-
tion is antisymmetric (changes sign) with respect to
the exchange of any two particles [8]. Examples of
bosons are photons and gluons; examples of fermions
are electrons, protons, neutrons, and quarks. Often

these two quantum statistics conveniently and effi-
ciently map onto a third, quantum spin statistics [9].
Still in other cases, when particle exchange is unlikely,
particle statistics is simply ignored.
For a given initial quantum state |Ψ(0)〉, a quan-

tum computer solves the time-dependent Schrödinger
equation

ih̄
∂|Ψ〉
∂t

= H|Ψ〉 (1)

by incrementally propagating the initial state via

|Ψ(t)〉 = e−i∆tH/h̄ · · · e−i∆tH/h̄︸ ︷︷ ︸
M factors

|Ψ(0)〉 . (2)

(t = M∆t and the Hamiltonian H is assumed time
independent). It should be reasonably apparent that
if the Monte Carlo method is applied to the evalua-
tion of the right-hand side of this equation, it is faced
with sampling from oscillatory integrands that are
not always positive and have unknown nodal surfaces.
Further, as time t increases, the integrand fluctu-
ates with increasing rapidity. While clever stationary-
phase forms of the QMC method have been devel-
oped, acceptable solutions are possible only for rel-
atively short times. This form of the sign problem
is called the dynamical sign problem, and we are un-
aware of any efficient [10] real-time QMC simulations
for bosonic, fermionic, or quantum spin systems.
Years ago [5], before quantum computers were

proposed, it was realized that by transforming
Schrödinger’s equation to imaginary-time τ via t →
−ih̄τ the problem with the rapid fluctuations was
eliminated. With this transformation, called Wick’s
rotation, one solves the diffusion-like equation

∂|Ψ〉
∂τ

= −H|Ψ〉 (3)

by incrementally propagating the initial state via

|Ψ(τ)〉 = e−∆τH · · · e−∆τH︸ ︷︷ ︸
M factors

|Ψ(0)〉 . (4)

(τ = M∆τ and the Hamiltonian H is assumed time
independent.) This transformation permits QMC sim-
ulations of time-reversal invariant interacting boson
systems to a high degree of accuracy. For systems
of interacting quantum spins and fermions (or bosons
with complex hermitian Hamiltonians [11]), the trans-
formation does not solve the sign problem. For quan-
tum spin systems, the difficulty is finding a basis in
which all matrix elements of the positive-definite op-
erator exp(−∆τH) are positive. Most notably this
difficulty occurs for frustrated quantum spins. For
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fermion systems, the problem is the Monte Carlo pro-
cess causing state exchanges that because of the anti-
symmetrization requirement just happen to produce
samples which are as frequently positive as negative.
For the sign problem found in both types of sys-
tems, the statistical error of the measured observables
grows exponentially fast with increasing system size.
Another difficulty with the imaginary-time approach is
analytically continuing the results back to real-time if
real-time, i.e., truly dynamical, information is needed
[12]. This continuation is an ill-posed problem whose
solution places extraordinary demands on the simula-
tion [13].

In this paper, we will focus on the dynamical sign
problem for a system of fermions, seemingly the most
challenging case. Eventually we will give a detailed im-
plementation of a simulation of the dynamical proper-
ties of a collection of interacting fermions on a quan-
tum computer. The implementation avoids the sign
problem. First, in Section 2 we will discuss more fully
the mathematical origin of the dynamical sign prob-
lem in classical computation and show why a quan-
tum algorithm overcomes the problem. In Section 3
we will give the elements required for Deutsch’s quan-
tum network model of a quantum computer [14]. The
quantum gate in this model conveniently allows the
propagation of systems of local two state objects, e.g.,
a localized quantum spin-12 particle called qubit. We
also propose a universal set of quantum gates (uni-
tary operators) that allows generic propagation of sys-
tems of fermions (the fabled “Grassmann chip” [15]).
The resulting fermion algebra has been the main tech-
nical tool for studying the classical Ising model in
two spatial dimensions [16], a prototype lattice model
that had an enormous impact on our understanding
of phase transitions. Next, In Section IV, we show
how this propagation can be effected by the quantum
spin gate. We will demonstrate the polynomial scaling
of the construction of the initial state, its subsequent
time propagation, and the measurement of some ob-
servable. Here we will also demonstrate the control
of the error in the results. In Section 5, we apply
our model of dynamical fermion computation to a toy
problem to illustrate our procedures in more detail.
Finally, in Section 6, we summarize and make some
remarks about future research directions.

Our universal fermion gate and its mapping to the
standard universal quantum gate is similar to the one
recently discussed by Bravyi and Kitaev [17] who ac-
tually propose that a quantum computer built from
fermions might be more efficient than one built from
distinguishable two state systems.

2 Dynamical Sign Problem

In order to understand the mathematical origin of the
dynamical sign problem we use the Feynman path in-
tegral formulation [18] for continuum systems in the
first quantization representation. In this formalism
one maps a quantum problem in D dimensions into
a classical one in D + 1 dimensions and then simu-
lates that problem probabilistically on a classical com-
puter. The algorithm is efficient except for the repeti-
tion needed to obtain sufficiently good statistics. The
“distinguishable particle” quantum mechanical prop-
agator of a system represented by the Hamiltonian
H = 1

2

∑Ne

i=1 p
2
i + V (R) is expressed as [19]

G(R → R′; t) = 〈R′, t|e−iHt|R, 0〉

=
∫ R(t)=R′

R(0)=R
D[R(t)] eiS[R(t)] , (5)

where the measure D[R(t)] = limM→∞
(2πit/M)−MD/2 dR1 · · · dRM−1, and the action

S [R(t)] =
∫ t

0
dτ

{
1
2

(
dR(τ)
dτ

)2

− V (R(τ))
}

. (6)

Bosonic or fermionic statistics are introduced by ap-
plying the corresponding symmetrization operator to
the propagator, Eq. 5. However, because the dynam-
ical sign problem occurs for any particle statistics, we
will ignore particle statistics for the sake of simplicity.
The description of the properties of different phys-

ical systems in terms of correlations of physical ob-
servables is the natural way to compare with available
experimental information. In this regard, linear re-
sponse theory provides a way to compute the response
of a system to a weak external dynamical perturba-
tion [20]. This linear response is always expressed in
terms of a time correlation function of the dynamical
variables that couple to the perturbation. For exam-
ple, if we were to apply an external time-dependent
magnetic field and we wanted to calculate the average
induced magnetization, we would have to compute a
time-dependent magnetization-magnetization correla-
tion function. The two-time correlation function be-
tween arbitrary local dynamical variables A and B is

CAB(t) = 〈A(t)B(0)〉 = 〈eiHtAe−iHtB〉 , (7)

if the Hamiltonian is time independent. Generically, a
stochastic estimate of CAB(t) is

CAB(t) =

∑
{Ri} A(RM+1)B(R1) eiΦ({Ri})∑

{Ri} eiΦ({Ri})

=
〈A(RM+1)B(R1)eiΦ({Ri})〉P

〈eiΦ({Ri})〉P , (8)
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where the configurations {Ri} are sampled from the
probability distribution P (positive semidefinite mea-
sure), and Φ is a real-valued function. One immedi-
ately sees that the origin of the dynamical sign prob-
lem is the oscillatory phase factor eiΦ that leads to
large phase fluctuations at long times. Manifestly,
|〈eiΦ({Ri})〉P | → 0 in an exponential fashion as t gets
larger. Therefore, the total statistical error for the
evaluation of CAB(t) grows exponentially with time
because of large cancellations both in the numera-
tor and denominator. The so-called “fermion sign
problem” is a particular case of this problem when
eiΦ = ±1 and time is imaginary [21].
Will a quantum computer solve this problem? One

often hears that it will because a quantum computer
is a physical system, whether a system of fermions
or not, and physical systems have no dynamical or
fermion sign problems. Furthermore it has been ar-
gued that there are means for mapping most physical
systems to a quantum computer in such a way that
the quantum computer’s controlled evolution mimics
that of the physical system [3, 22]. A closer look, how-
ever, makes the situation less clear. A quantum com-
puter is a computer, and as such it suffers from lim-
ited accuracy. More importantly this type of computer
predicts results stochastically, meaning each measure-
ment is one member of the ensemble of measurements
possible from a distribution specified by the modulus
squared of the wave function for the Hamiltonian H
modeled by the quantum computer. For a fixed physi-
cal time t > 0, how accurate is an individual measure-
ment, how accurate is the expectation value of these
measurements, and how controlled is their estimated
variance? Is the level of accuracy and control achiev-
able polynomially with complexity and t?
There is an area where a problem similar to the sign

problem has been recognized and resolved by quan-
tum computation. Recently it was shown that quan-
tum computation is polynomially equivalent to clas-
sical probabilistic computation with an oracle for es-
timating the value of simple sums of rational num-
bers called quadratically signed weight enumerators
(QWGTs) [23]. In other words, if these sums could be
evaluated, one could use them to generate the quan-
tum statistics needed to simulate the desired quantum
system. More specifically, what was demonstrated was
the obtainability of expectation value of operators in
quantum computation by evaluating sums of the form

S(A,B, x, y) =
∑

b:Ab=0

(−1)bTBbx|b|yn−|b|, (9)

where A and B are 0-1-matrices with B of dimension
n×n and A of dimension m×n. The variable b in the

summand ranges over 0-1-column vectors of dimension
n, bT denotes the transpose of b, |b| is the weight of b
(the number of ones in the vector b), and all calcula-
tions involving A, B and b are done modulo 2. The ab-
solute value of S(A,B, x, y) is bounded by (|x|+ |y|)n.
Quantum computation corresponds to the problem of
determining the sign of S(A, lt(A), k, l) with the re-
strictions of having dg(A) = I, k and l being posi-
tive integers, and |S(A, lt(A), k, l)| ≥ (k2 + l2)n/2/2.
dg(A) is a diagonal matrix formed from the diagonal
elements of A and lt(A) is a lower triagonal matrix
formed from the lower triangular elements of A. De-
tails of this quantum algorithm can be found in [23].
The main point is that these sums are similar to the

numerator of Eq. 8, and attempts to estimate them
by random sampling result in exponentially bad sig-
nal to noise ratios. In the case of QWGTs, quantum
computers can estimate the sum exponentially better
than classical computers, but the estimate is not exact.
The situation for the dynamical sign problem is sim-
ilar: Quantum computers cannot obtain exact values
for the desired correlation functions, but can obtain
estimates sufficiently exact to avoid the sign problem
suffered by the known classical algorithms and to yield
usable information about the physical models simu-
lated.
In this paper we will show explicitly how the sign

problem is avoided in the case of simulating fermions.
Below we will give a means for translating local
fermion Hamiltonians into the Hamiltonians available
in the standard model of quantum computation. In
contrast to quantum simulations on a classical com-
puter this translation prevents uncontrolled exchange
processes that are the dominant source of the fermion
sign problem. With respect to the dynamical sign
problem, we then argue by using standard error cor-
rection analysis developed for the standard model of
quantum computing that these gates will enable suffi-
ciently accurate measurements of correlation functions
so the accuracy of the average of these measurements
will be dominated by the statistical error. The sta-
tistical error is problem dependent but polynomially
bounded, so that the difficulty associated with phase-
weighted averages is eliminated.

3 Models of Quantum Compu-
tation

The quantum control model of quantum computation
assumes the existence of physical systems that can be
controlled by modulating the parameters of the sys-
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tem’s Hamiltonian HP . The control possibilities are
abstracted and used to implement specific quantum
gates that represent the unitary evolution of the phys-
ical system over a time step obtained by specific mod-
ulations of the Hamiltonian. In most treatments, the
physical systems, together with the gates, are then
taken as the abstract model of quantum computation.
The quantum control and quantum gate viewpoints
are effectively equivalent, but to tie the computational
model to the physics simulation problem more closely,
we choose to describe quantum computation from the
point of view of quantum control; that is, we will
assume an HP . In this context we begin by giving
the standard model of quantum computation and then
defining an alternative model based on fermions.
Defining a model of quantum computation consists

of giving an algebra of operators, a set of controllable
Hamiltonians (Hermitian operators in the algebra), a
set of measurable observables, and an initial state of
the physical system. In the simplest case, the observ-
ables are measured by the method of projective mea-
surements, and the initial state of the physical system
is an expectation value of the algebra’s operators.

3.1 Standard Model of Quantum Com-
putation

The standard model of quantum computation
(Deutsch’s quantum network representation) is based
on an assembly of two state systems called qubits, con-
trolled by one- and two-qubit Hamiltonians, and on a
measurement process determined by one-qubit observ-
ables.
Operator algebra: It is convenient to define the
standard model through the algebra of operators act-
ing on the qubits. This algebra is generated by the
unit and Pauli matrices σx, σy and σz for each qubit
j,

1l =
(
1 0
0 1

)
; σx =

(
0 1
1 0

)
;

σy =
(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (10)

These matrices represent quantum operators with
mixed commutation relations and span the space of
complex-valued 2 × 2 matrices. For qubits j �= k, the
σ’s commute, and for qubits j = k, they satisfy the
relation σµσν + σνσµ = 2δµν1l, (µ, ν = x, y, z). For
a quantum register with n qubits, one may take the
operator σjµ defined in terms of a Kronecker product

σjµ = 1l⊗ 1l⊗ · · · ⊗ σµ︸︷︷︸
jth factor

⊗ · · · ⊗ 1l

of matrices acting on n two-dimensional linear spaces.
Thus σjµ admits a matrix representation of dimension
2n × 2n.
Control Hamiltonians: Control of qubits is
achieved by applying Hamiltonians that act on either
one or two qubits. A theorem [24, 25] in quantum in-
formation processing says that a generic operation on
a single qubit and any interaction between two qubits
is sufficient for building any unitary operation. We
take

HP (t) =
∑
j

[αxj
(t) σjx + αyj

(t) σjy]

+
∑
i,j

αij(t) σizσ
j
z,

where the αµ(t) are controllable. Ideally, no con-
straints on the control functions are assumed. How-
ever, it is often simpler to design the required con-
trol by assuming that only one of the αµ(t) is non-
zero at any time. A quantum algorithm for this
model of quantum computation consists of prescrib-
ing the control functions [26]. A convenient measure
of the complexity of such an algorithm is the integral∫ t
0 dt

′
√∑

µ α
2
µ(t′) (the action of the algorithm). The

quantum gates are simply specific unitary evolutions
that may be implemented in terms of HP . A conve-
nient universal set of gates is given by operators of the
form exp(iσiµπ/4) and exp(iσ

i
zσ

j
zπ/8). In the quan-

tum network representation of the standard model, an
algorithm is a specific sequence of these operators ap-
plied to the initial state of the qubits.
Initial state: The initial state of the qubits is as-
sumed to be an n term Kronecker product of the state
|0〉 ≡ (1

0

)
which is an eigenstate of σzwith eigenvalue

1. The state is completely determined by the expec-
tation values 〈0|σiµi

|0〉, which are 1 if the σiµi
are all

σiz or the identity, and are 0 otherwise. Physically, the
initial state has all “spins” up.
Measurement: The final feature of the model of
computation is the specific means for extracting in-
formation after a sequence of operations has been ap-
plied to the initial state. In the standard model, it is
always possible to apply a projective (von Neumann)
measurement [27] using the observables σiz. With this
capability, it is unnecessary to give an initial state ex-
plicitly, as the desired state can be prepared by us-
ing measurement and operations. To learn the ex-
pectation of an observable at the end of an algorithm,
one repeats the algorithm and measurement procedure
many times and averages over the measurements until
the desired accuracy is achieved.
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For a description of the standard model of quantum
computation in terms of quantum Turing machines,
see [28]. Quantum networks are discussed in [24]. In-
troductory descriptions of the standard model may be
found in [29, 30].

3.2 Fermion Model of Quantum Com-
putation: Grassmann chip

Somewhat analogously, we now describe a standard
model of fermion computation. For simplicity we only
consider spinless fermions, i.e., fermions without inter-
nal spin degrees of freedom, although we could have
considered more general fermionic algebras with inter-
nal degrees of freedom [9]. Physically, a system of spin-
less fermion might be a system of spin- 12 electrons in
a magnetic field sufficiently strong to polarize it fully.
The basic system of this model is a state (or fermionic
mode) that can be occupied by 0 or 1 spinless fermion.
We define the model for n such modes.
Operator algebra: We define the model through the
algebra of the spinless fermion operators aj and a

†
j for

each qubit j (j = 1, · · · , n), i.e., through the algebra
of 2n elements satisfying canonical anticommutation
relations

{ai, aj} = 0 , {ai, a†
j} = δij ,

where {A,B} = AB + BA denotes the anticommuta-
tor or Jordan product. a†

j (aj) creates (annihilates)
a spinless fermion in state (mode) j. Each element
admits a matrix representation of dimension 2n × 2n.
The fermion algebra is isomorphic (as a ∗-algebra) to
the standard model (or Pauli) algebra. The isomor-
phism is established through the Jordan-Wigner map-
ping [31].
Control Hamiltonians: We take

HP =
∑
j

[
αj(t)aj + α̃j(t)a

†
j

]
+
∑
ij

αij(t)
(
a†
iaj + a†

jai

)
+ βij(t) a

†
iaia

†
jaj .

This is a universal Hamiltonian, i.e., any other Hamil-
tonian for a system of interacting spinless fermions
can be generated by it. Physical operators must be
(Hermitian) products of even degree involving combi-
nations of the creation and annihilation operators such
as the terms in the last two summands of the Hamil-
tonian above.
Initial state: The initial state is assumed to be an
n term Kronecker product of the state |0〉 which is
an eigenstate of the number operator a†

jaj with eigen-
value 0. The state is completely determined by the

expectation values 〈0|a†
jaj |0〉 = 0 for all j. Physically,

the initial state has all modes unoccupied.
Measurement: Measurements can again be per-
formed by using von Neumann’s scheme of projective
measurements. In Section 4.3, we will discuss another
scheme more appropriate for the physical systems at
hand.
In the next subsection we show how to simulate the

fermion model by using the standard spin-12 model. In
particular it is possible to efficiently map the fermion
Hamiltonians to Pauli operators which can be simu-
lated using the control Hamiltonians of the standard
model. This establishes that these two models of com-
putation are polynomially equivalent. Here the point
of view is similar to the one used for classical models of
computation: the simulation of one model by another
establishes their equivalence.

4 Fermion Computation via the
Standard Model

In the previous Section we gave the elements required
for Deutsch’s quantum network model of a quantum
computer [14] and proposed a universal set of quantum
gates (unitary operators) that allows generic propaga-
tion of systems of fermions (the fabled “Grassmann
chip” [15]). Here we show how this propagation can
be effected by the quantum spin gate. We will demon-
strate the polynomial scaling of the construction of the
initial state, its subsequent time propagation, and the
measurement of some observable. We will also demon-
strate the control of the error in the results.
The first step is the observation that the set of 2n

matrices γµ (of dimension 2n × 2n) satisfying the Clif-
ford algebra identities

{γµ, γν} = 2δµν

admits a representation in terms of Pauli matrices
(Brauer-Weyl construction)

γ1 = σ1
x, γ2 = σ1

y

γ3 = σ1
zσ

2
x, γ4 = σ1

zσ
2
y

γ5 = σ1
zσ

2
zσ

3
x, γ6 = σ1

zσ
2
zσ

3
y

...

γ2n−1 = [
n−1∏
j=1

σjz]σ
n
x , γ2n = [

n−1∏
j=1

σjz]σ
n
y .
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The following mapping of fermion operators

aj→
(
j−1∏
i=1

−σiz
)
σj− = (−1)j−1 σ1

zσ
2
z · · ·σj−1

z σj−

= (−1)j−1 γ2j−1 − iγ2j

2

a†
j→
(
j−1∏
i=1

−σiz
)
σj+ = (−1)j−1 σ1

zσ
2
z · · ·σj−1

z σj+

= (−1)j−1 γ2j−1 + iγ2j

2

where σj± = σj
x±iσj

y

2 , defines a ∗-algebra isomorphism
to the algebra of operators of the standard model. It
is the so-called spin- 12 Jordan-Wigner transformation
[31], and has the property that n̂j = a†

jaj = σj+σ
j
− =

1
2 (1l+σ

j
z). We note that n̂j is a “local” particle number

(or density) operator and many types of interaction in
physical systems are of the form “density times den-
sity” which simplifies the simulation as we will see.
It is important to emphasize that the success of our

approach depends upon the mapping of algebras (and
not of Hilbert spaces). In this regard it is relevant
to mention that the transformation just presented is
a particular case of a more general set of mappings
that we would like to name generalized Jordan-Wigner
transformations [9]. It is possible to imagine a quan-
tum computer implemented, for example, with a three
state unit (S=1) instead of a qubit. In such a case,
these generalized transformations still allow one to
simulate fermions or particles with arbitrary statistics.
Two additional comments are in order: The map-

ping for aj and a†
j described above corresponds to

a one-dimensional array of spins. The extension to
higher spatial dimensions can be done [32, 33, 9] in
various ways. A straightforward extension to two di-
mensions is to re-map the sites of a two dimensional
array onto a one dimensional string and proceed as
before. Also there is nothing special about using the
fermion instead of a quantum spin as an alternative
model of computation. One could have just as well
used the hard core boson [9]. The main question is
whether different algebras admit a physical realization.
For hard-core bosons this realization is He4 atoms.

4.1 Evolution

Given a fermion model algorithm, it is necessary to ef-
ficiently obtain a corresponding standard model algo-
rithm that at least approximates the desired evolution.
The general principle is to map the time-dependent
fermion Hamiltonian H(t) =

∑
iHi to the standard

model operators via the Jordan-Wigner transforma-
tion, express the result in terms of a sum of simple
products of Pauli operators, and then use the Trotter
approximation

e−i∆t(H0+H1+...)/h̄=
∏
i

e−i∆tHi/h̄ +O((∆t)2). (11)

Each time step ∆t is chosen so that the final error of
the simulation is sufficiently small. Provided that the
number of terms in the sum is polynomially bounded
in the number n of qubits or fermionic modes and pro-
vided that each term can be polynomially simulated,
the simulation is efficient in n and 1/error.
To see how to do the simulation, consider the ex-

ample of the bilinear operator Hc = a1a
†
j+aja

†
1 in the

control Hamiltonian of the fermion model:

Hc=(−1)j [σ1
−σ

1
z · · ·σj−1

z σj+ + σ1
zσ

1
+σ

2
z · · ·σj−1

z σj−]

=
(−1)j
2

[σ1
xσ

2
z · · ·σj−1

z σjx + σ1
yσ

2
z · · ·σj−1

z σjy] .

It is readily checked that the Jordan-Wigner transfor-
mation for the other terms in the control Hamiltonians
are also decomposable into sums of a few products of
Pauli operators.
The whole idea of a quantum computer is simu-

lating the operations we want by using unitary ma-
trices U = exp(−i∆tHP /h̄). These unitary matri-
ces, representing quantum gates, perform reversible
computation and are case-dependent. For our par-
ticular case, we know how to simulate H = σ1

z in the
spin- 12 case (it is directly implemented in the stan-
dard model), so we ask what set of unitary operations
produce the evolution Ũ = exp(−i∆tHc/h̄). In other
words, how do we write a U = U1 . . . Uk such that
Hc = U†HU? Consider for example the Hamiltonian
Hx = σ1

xσ
2
z · · ·σj−1

z σjx. The procedure is as follows:
The unitary operator

U1 = ei
π
4 σ

1
y =

1√
2

[
1̂l + iσ1

y

]
=

1√
2

(
1 1

−1 1

)
⊗ 1l⊗ · · · ⊗ 1l

takes σ1
z → σ1

x, i.e., U
†
1σ

1
zU1 = σ1

x. The operator

U2 = ei
π
4 σ

1
zσ

2
z =

1√
2

[
1̂l + iσ1

zσ
2
z

]
takes σ1

x → σ1
yσ

2
z . The next step is

U3 = ei
π
4 σ

1
zσ

3
z

7



to take σ1
yσ

2
z → −σ1

xσ
2
zσ

3
z . By successively similar

steps we easily build the required string of operators:
σ1
xσ

2
z · · ·σj−1

z σjx.
If j is odd,

Uj = ei
π
4 σ

1
zσ

j
z

will take σ1
yσ

2
z · · ·σj−1

z → (−1)[ j−1
2 ]σ1

xσ
2
z · · ·σjz, where[

m
l

]
is the integer part of m/l. The final operator

Uj+1 = ei
π
4 σ

j
y

will bring the control operator to the desired one (up
to a global phase (−1)[ j−1

2 ]):

σ1
xσ

2
z · · ·σj−1

z σjx .

If j is even, we need an additional unitary operator
that flips the first qubit’s σ1

y into a σ1
x. This flip is

achieved with the operator

Uj+2 = e−iπ
4 σ

1
z =

(
e−iπ

4 0
0 ei

π
4

)
⊗ 1l⊗ · · · ⊗ 1l

that takes σ1
y → σ1

x.
Hence, to construct this non-local fermion operator

from the standard model requires additional steps that
are proportional to j . This number scales polynomi-
ally with the complexity so the construction is efficient
if the standard model is efficient.
The one and two-body nature of naturally occurring

interactions means that a term in a second-quantized
representation of a Hamiltonian only has one of two
forms: either a†

iaj or a
†
iaja

†
kal. We just demonstrated

how to handle the first case. The second case merely
requires applying that algorithm twice. This squares
the complexity.

4.2 State preparation

In this Section we discuss the preparation of states
of physical relevance. Clearly, the preparation of the
initial state is a very important step since the study
and efficiency of the given physical process one wants
to simulate depends upon it.
Consider a system of Ne fermions and n operators

a†
j (single particle states). A generic Ne-particle state
of a Hilbert space HNe of antisymmetrized wave func-
tions can always be expanded in terms of the antisym-
metric states

|Φα〉 =
Ne∏
j=1

b†j |vac〉 ,

where b†j creates a state j and |vac〉 = |0〉⊗|0〉 · · ·⊗ |0〉
is the vacuum state (i.e., bj |0〉 = 0, ∀j). The operator

b† is in general a linear combination of a†’s, i.e., b†j =∑n
i=1 a

†
iPij where Pij is some matrix and Ne ≤ n.

The states |Φα〉 (α = 1, · · · ,
(

n
Ne

)
) in general form

an overcomplete set of non-orthogonal states that span
the whole HNe

, i.e., redundantly generate HNe
. They

are known as Slater determinants [20]. Typically, |Φα〉
is the result of a self-consistent mean-field (or gen-
eralized Hartree-Fock) calculation. Even a Bardeen-
Cooper-Schrieffer superconducting state, which does
not preserve the number of particles, can be written
in this way after an appropriate canonical transforma-
tion which redefines the vacuum state [34].
One can easily prepare the states |Φα〉 noticing that

the quantum gate, represented by the unitary operator

Um = ei
π
2 (bm+b†

m)

when acting on the vacuum state, produces b†m |0〉 up
to a phase ei

π
2 . Therefore, the successive application of

similar unitary operators will generate the state |Φα〉
up to a global phase.
Except for very small systems the total Hilbert

space is too large to be fully used (it has an exponen-
tial growth with increasing system size). In practice,
one works in a subspace of HNe

that closely represents
the physical state one is trying to simulate. Generi-
cally, as initial state, we will consider a very general
expression of a many-fermion state:

|Ψ(t = 0)〉 =
N∑
α=1

aα |Φα〉 ,

where the integer N is a finite and small number. The
state can be prepared efficiently (in N) by a number
of procedures. We now describe one.
To make the description simple, we will assume∑N
α=1 |aα|2 = 1 and 〈Φα|Φβ〉 = δαβ , which is equiva-

lent to requiring {|Φα〉} to be an orthonormal set and
|Ψ(t = 0)〉 to be normalized to unity. With these as-
sumptions the steps of the state preparation algorithm
are:

1. Adjoin N auxiliary (ancilla) qubits, each in the
state |0〉, to the vacuum of the physical system.
The resulting state is

|0〉 ⊗ |0〉 ⊗ · · · |0〉︸ ︷︷ ︸
N

⊗|vac〉 ≡ |0〉a ⊗ |vac〉 (12)

2. From this state generate
∑N

α=1 aα|α〉⊗|vac〉 where
|α〉 is an ancilla state with only the α qubit being
|1〉. The procedure for generating this combina-
tion of states is described below.
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3. For each α = 1, . . . , N , conditional on the α qubit
being |1〉, apply the state preparation procedure
for |Φα〉. The resulting state is

N∑
α=1

aα|α〉 ⊗ |Φα〉 (13)

4. From this state generate

1√
N

N∑
α=1

aα|0〉a ⊗ |Φα〉+ terms without |0〉a (14)

This step will also be described below.

The final step is accepted if a measurement shows all
the ancillas being returned to |0〉a. The probability of
successful preparation is thus

∑N
α=1 |aα|2/N = 1/N .

Consequently, on average, N trials will be needed be-
fore a successful state preparation.
The procedure to produce step 2 is most easily de-

scribed by example. We will assume N = 2. The prob-
lem then is to generate a1|10〉 ⊗ |vac〉+ a2|01〉 ⊗ |vac〉
from |00〉 ⊗ |vac〉. In what follows all operations will
be only on the ancilla part of the initial state so we
will not explicitly show the vacuum. We also note that
one can always apply a rotation to a given qubit that
will take |0〉 into x|0〉+ y|1〉 with |x|2 + |y|2 = 1. The
steps of the procedure are:

2.1 Adjoin an ancilla qubit |b〉 initially being |0〉. The
initial state is now |0〉 ⊗ |00〉.

2.2 Conditional on |b〉 = |0〉, rotate the α = 1 qubit,
and then conditional on the α = 1 qubit being
|1〉, flip |b〉:

x1|0〉 ⊗ |00〉+ y1|1〉 ⊗ |10〉 (15)

2.3 Conditional on |b〉 being |0〉, rotate the α = 2
qubit, and then conditional on the α = 2 qubit
being |1〉, flip |b〉:

x1x2|0〉 ⊗ |00〉+ x1y2|1〉 ⊗ |01〉+ y1|1〉 ⊗ |10〉 (16)

2.4 Project out the states with |b〉 being |1〉:

x1y2|01〉+ y1|10〉 (17)

The rotations are chosen so that a1 = y1 and a2 =
x1y2.
For the explanation of step 4, we will display the

physical states. The problem is: Starting with a1|10〉⊗
|Φ1〉+ a2|01〉 ⊗ |Φ2〉, produce (14).

4.1 Adjoin an ancilla qubit |b〉 initially being |0〉. The
initial state is now a1|0〉 ⊗ |10〉 ⊗ |Φ1〉 + a2|0〉 ⊗
|01〉 ⊗ |Φ2〉.

4.2 Conditional on |b〉 being |0〉, rotate the α = 1
qubit, and then conditional on the α = 1 qubit
being |1〉, flip |b〉:

a1(x1|0〉 ⊗ |00〉+ y1|1〉 ⊗ |10〉)⊗ |Φ1〉
+a2(x1|0〉 ⊗ |01〉+ y1|1〉 ⊗ |11〉)⊗ |Φ2〉 (18)

4.3 Conditional on |b〉 being |0〉, rotate the α = 2
qubit, and then conditional on the α = 2 qubit
being |1〉, flip |b〉:

a1x1(x2|0〉 ⊗ |00〉+ y2|1〉 ⊗ |01〉)⊗ |Φ1〉
+a2x1(x2|0〉 ⊗ |00〉+ y2|1〉 ⊗ |01〉)⊗ |Φ2〉 (19)

4.4 Project out the states with |b〉 = |0〉:
x1x2(a1|00〉 ⊗ |Φ1〉+ a2|00〉 ⊗ |Φ2〉) (20)

The rotations are chosen so that x1x2 equals 1/
√
N

where N = 2. Comparing step 2 with step 4, one
sees they are structurally identical, differing by the
set of amplitudes generated and the complementarity
of the subspaces selected for the final result. This
latter difference in some sense makes one procedure
the inverse of the other. For the case of N > 2, one
simply replaces steps 2.2 and 2.3 and steps 4.2 and 4.3
by “do loops” over α from 1 to N .
On average, the entire procedure needs N trials be-

fore a successful state preparation. (In many cases, the
other measurement outcomes can be used also to avoid
too many trials.) Construction of the initial state thus
scales as O(N2nNe) ≤ O(N2n2) so unless the number
of Slater determinants is exponentially large, general
many-fermion states can be initialized efficiently.

4.3 Measurement

While there is a variety of physical observables one
measures experimentally and calculates theoretically,
at this time it is difficult to demonstrate that they
all can be computed efficiently on a quantum com-
puter. Fortunately, we will now argue that one im-
portant class of observables, the temporal correlation
functions CAB(t), can be computed not only efficiently
but also accurately. These functions describe the tem-
poral evolution of some observable A(t) in response
to some weak external stimulus that couples to the
system’s variable B(0). They are at the heart of un-
derstanding, for example, the optical properties of ma-
terials.
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The goal is to determine correlations of the form
CAB(t) = 〈A(t)B(0)〉 = 〈eiHtAe−iHtB〉 up to a suffi-
ciently small statistical error. Clearly, measuring ef-
ficiently CAB is not possible for an arbitrary A and
B. One sufficient condition is that A and B are ef-
ficiently simulatable Hamiltonians. This observation
is based on a method for determining CAB refined by
Kitaev [35] and applied to the measurement of correla-
tion functions by Terhal and DiVincenzo [36]. Here we
give a different method based on an idea given in [37].
A general principle that can be used to obtain CAB

is to decompose the operator whose expectation needs
to be determined , i.e., A(t)B(0), into a small sum of
operators of a simpler form and measure each sum-
mand individually. Our method directly measures ex-
pectations of the form 〈U†V 〉 when algorithms for im-
plementing the unitary operators U and V are avail-
able. General correlation functions are then deter-
mined by decomposing operators using a unitary oper-
ator basis, for example the one consisting of products
of Pauli matrices.
The method for measuring 〈U†V 〉 consists of the

following steps:

1. Adjoin via a direct product an ancilla (i.e., an
auxiliary) qubit a in the state (|0〉+ |1〉)/√2 with
density matrix ρa = (1l+σa

x)/2 to the initial state
of the system described by the density matrix ρ.

2. Apply the conditional evolutions Ū1 = |0〉〈0| ⊗
U + |1〉〈1| ⊗ 1l and Ū2 = |1〉〈1| ⊗ V + |0〉〈0| ⊗ 1l
(Ū = Ū1Ū2). The methods of [24] may be used to
implement these evolutions given algorithms for
U and V .

3. Measure 2σa
+ = σa

x + iσa
y = 2|0〉〈1|. This may be

done by measuring σa
x and σ

a
y in sufficiently many

independent trials of these steps.

4. Given the initial density matrix ρ, the expectation

〈σa
x + iσa

y 〉ρa⊗ρ=2Trn+1[Ū†|0〉〈1|Ūρa ⊗ ρ]

=Trn+1[|0〉〈1| ⊗ U†V ρa ⊗ ρ]
=Trn[U†V ρ]=〈U†V 〉ρ, (21)

as desired. The statistical noise in the measure-
ment of 〈U†V 〉ρ is determined by that of two bi-
nary random variables and therefore depends only
on the value of Trn[U†V ρ], which is inside the unit
complex circle. As a result it is a simple matter to
determine the number of measurement attempts
required to achieve sufficient statistical accuracy.

The procedure for measuring CAB(t) can now be
summarized as follows: First express A = A(0) and

B = B(0) as a sum of unitary operators A =
mA∑
j=1

Aj

and B =
mB∑
j′=1

Bj′ . A convenient unitary operator ba-

sis that works well for the local observables of interest
consists of all the products of Pauli operators, as each
such product is easily implemented as a quantum al-
gorithm. Then, for each j and j′ one uses the just de-
scribed method with U = eiHtA†

je
−iHt and V = Bj′

to obtain 〈Aj(t)Bj′(0)〉. V may be implemented by
simulating the evolution under H, applying Bj′ , and
then undoing the evolution under H.
An alternative approach to the measurement pro-

cess is von Neumann’s projection method. We sketch
it here for completeness and comparison. In this ap-
proach we also add an auxiliary (ancilla) degree of free-
dom to the problem. Suppose that this extra qubit
corresponds to an harmonic oscillator degree of free-
dom |e〉. Then, we consider the composite state

|Ψ〉S ⊗ |e〉0 ,

where |Ψ〉S =
∑

j λj |φj〉S is the state of the system we
want to probe and |e〉t is the state of the harmonic os-
cillator in the coordinate (x-)representation. The cor-
responding state in the momentum (p-)representation
is denoted |ê〉t.
Assume the observable (t-independent Hermitian

operator) we want to measure is A. Then, we are in-
terested in determining S〈Ψ|A|Ψ〉S in an efficient way.
Suppose that we know how to implement the unitary
operation US(t) = e−iAt. Following Kitaev we want
to implement the following conditional evolution

U =
∑
t

|e〉t t〈e| US(t) .

¿From the spectral theorem we can write A =∑
j Λj |φj〉S S〈φj |. Then,

U |φj〉S ⊗ |0̂〉0 =
∑
t

U |φj〉S ⊗ |e〉t

=
∑
t

e−iΛjt |φj〉S ⊗ |e〉t

= |φj〉S ⊗ |Λ̂j〉t ,
where |0̂〉0 is a state with (p = 0) zero momentum.
Basically, the conditional evolution U is a momentum
translation operator for the harmonic oscillator extra
state. Finally,

U|Ψ〉S ⊗ |0̂〉0 =
∑
j

λj |φj〉S ⊗ |Λ̂j〉t .
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Although the second measurement method is con-
ceptually simpler, it requires approximately imple-
menting the ancillary harmonic oscillator, the condi-
tional evolutions for many different choices of t, and a
more complex analysis of the measurement statistics.
The conditional evolutions can be simplified some-
what, and in special cases (such as as a subroutine
of factoring) become very efficient—see [35].

4.4 Measurement Noise Control

The quantum physics simulation algorithm described
above is approximate and the output is noisy. In order
to properly use it, we need to have explicit estimates
of the error ε in the inferred expectations given the
noise in the implementation. Furthermore, the effort
required to make ε small must scale polynomially with
1/ε. There are three sources of error that need to be
considered. The first is associated with intrinsic noise
in the implementation of the gates due to imperfec-
tions and unwanted interactions. The second comes
from the discretization of the evolution operator and
the use of the Trotter decomposition. The third is due
to the statistics in measuring the desired correlation
function using the technique given above.

4.4.1 Gate imperfections

The problem of gate imperfections can be dealt with
by using quantum error correction [38, 39] and fault
tolerant quantum computation [40, 41, 42, 43, 44]. Ac-
cording to the accuracy threshold theorem, provided
the physical gates have sufficiently low error, it is pos-
sible to quantum compute arbitrarily accurately. The
fault tolerant computation implements unitary opera-
tions and measurements on encoded qubits with over-
heads bounded byO(logk(1/ε)) for some k. This expo-
nentially efficient convergence implies that the effects
of physical noise can in principle be ignored.

4.4.2 Discretization error

A second type of error is the one introduced by the dis-
cretization of the evolution operator. This discretiza-
tion is very similar to the one used in classical simu-
lation of dynamical quantum systems. It is possible
to estimate the size of this error by a detailed analysis
of the discretization. For example using the Trotter
approximation

e−i(H1+H2)∆t = e−iH1∆t/2e−iH2∆te−iH1∆t/2

+ O((∆t)3).

The coefficient of (∆t)3 ∼ −i(H1 + H2)3/6 can be
bounded by estimating the largest eigenvalue of H1
and H2.

4.4.3 Measurement statistics

Our technique for measuring the correlation function
〈A(t)B(0)〉 requires measuring the expectations of uni-
tary operators U†

j Vj′ associated with the implemented
evolution. In most cases, the operators A and B are
a sum of O(mA,B) products of Pauli matrices, so that
O(mA) U

†
j ’s and O(mB) Vj′ ’s are needed. This means

that the expectation is a sum of O(mAmB) random
variables rjj′ , where |rjj′ | ≤ 1. To assure that the sta-
tistical noise (given by the standard deviation) is less
than ε it suffices to measure each rjj′ O(mAmB/ε

2)
times.

5 Resonant Impurity Scattering

5.1 Formulation of the Physical Prob-
lem

Our toy problem is a ring of n equally-spaced lattice
sites on which spinless fermions hop to nearest neigh-
bor sites or hop onto or from an “impurity” state. The
length of the ring is L = na, where a is the distance
between sites. The system is described by the Hamil-
tonian (in second quantized form)

H = −T
n∑
i=1

(c†i ci+1 + c†i+1ci) + ε b†b

+
V√
n

n∑
i=1

(c†i b+ b†ci) , (22)

where T is the hopping matrix element, ε is the energy
of the localized (impurity) state, and V is a hybridiza-
tion energy. As usual, b’s and c’s are fermion (anti-
commuting) operators. The index i labels the lattice
sites (Ri = ia is the lattice site position) and strict
periodic boundary conditions are assumed, i.e.,

c†i+n = c†i . (23)

We now imagine that the system is initially pre-
pared in the zero temperature ground state of the ring
in the absence of the impurity. Then, at time t = 0, a
fermion is injected into the impurity state. After the
system has evolved for some time t, we want to com-
pute the probability amplitude that the evolved state
is still in the initial state. The relevant quantity to
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compute is (h̄ = 1 and t ≥ 0)

G(t) = 〈Ψ(0)|b(t)b†(0)|Ψ(0)〉 , (24)
b(t) = eiHt b(0) e−iHt , (25)

where the initial state is the Fermi sea of Ne ≤ n
fermions

|Ψ(0)〉 = |FS〉 =
Ne−1∏
i=0

c†ki
|0〉 . (26)

|0〉 is the vacuum of fermions and

c†ki
=

1√
n

n∑
j=1

eikiRj c†j . (27)

The wave number kj is determined from the periodic
boundary conditions, c†i+n = c†i , which implies

kj =
2πnj
L

, with nj an integer . (28)

There is no unique way to choose the set of nj ’s. The
common convention is to define the first Brillouin zone
as

−π

a
< k ≤ π

a
, (29)

with k values uniformly distributed in this interval
with spacing ∆k = 2π/L.

5.2 Quantum Algorithm

We want to write a quantum algorithm that allows
one to compute G(t). To this end, we start by repre-
senting fermion operators in terms of Pauli matrices.
Because of the form of the hybridization term a most
convenient representation is the following

b† = σ1
+

c†k0
= −σ1

zσ
2
+

...
c†kn−1

= (−1)nσ1
zσ

2
z · · ·σnz σn+1

+ ,

from which the following mapping results

b†b =
1
2
(1l + σ1

z)

c†ki
cki

=
1
2
(1l + σi+2

z )

c†k0
b + b†ck0

=
1
2
(σ1

xσ
2
x + σ1

yσ
2
y) .

Therefore, the Hamiltonian operator reads

2H =

[
ε+

n−1∑
i=0

Eki

]
1l + εσ1

z +
n−1∑
i=0

Eki
σi+2
z

+ V (σ1
xσ

2
x + σ1

yσ
2
y) (30)

where Ek = −2T cos ka. An additional simplification
can be introduced when one realizes that the structure
of the observable to be measured is such that

b(t) = eiHtb(0)e−iHt = eiH̄tσ1
−e

−iH̄t , (31)

where H̄ is given by

H̄ =
ε

2
σ1
z +

Ek0

2
σ2
z +

V

2
(σ1

xσ
2
x + σ1

yσ
2
y) , (32)

and, therefore, the “string” one has to simulate has
length equal to two (it involves only qubits 1 and 2)

A(t) = b(t)b†(0) = eiH̄tσ1
−e

−iH̄tσ1
+ . (33)

If we were to transform H̄ = UHP1U
† unitarily with

U =
∏n

j=1 e
iHj

P2tj and n a finite integer (UU† = 1l)
in such a way that both HP1 and HP2 are physical
Hamiltonians, then the simulation would be straight-
forward. (We call this type of mapping a physical
unitary mapping.) For our two qubit case, one can
always perform a physical unitary mapping with

U = ei
π
4 σ

2
xe−iπ

4 σ
1
ye−i θ

2σ
1
zσ

2
zei

π
4 σ

1
yei

π
4 σ

1
xe−iπ

4 σ
2
x

× e−iπ
4 σ

2
yei

θ
2σ

1
zσ

2
ze−iπ

4 σ
1
xei

π
4 σ

2
y , (34)

HP1 =
1
2
(E −

√
∆2 + V 2)σ1

z

+
1
2
(E +

√
∆2 + V 2)σ2

z , (35)

with E = (ε+Ek0 )
2 , ∆ = (ε−Ek0 )

2 , and cos θ = 1/
√
1 + δ2

with δ = (∆+
√
∆2 + V 2)/V .

In general, such a constrained transformation is not
easily realized and one performs a Trotter decomposi-
tion

eiH̄t =
[
eiH̄s

]M
=
[
eiH̄zseiH̄xys +O(s2)

]M
(36)

where H̄ = H̄z+H̄xy with H̄xy = V
2 (σ

1
xσ

2
x+σ

1
yσ

2
y) and

time slice s = t
M . On the other hand, one can easily

perform a physical unitary mapping for eiH̄xys

eiH̄xys = ŪeiHP1sŪ† , (37)

where HP1 = V
2 (σ

1
x − σ2

y) and

Ū = ei
π
4 σ

2
xe−iπ

4 σ
1
ye−iπ

4 σ
1
zσ

2
z . (38)
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Finally, the “string” one has to simulate with the
quantum computer is

A(t) � [S(s)]M σ1
−
[
S†(s)

]M
σ1

+

S(s) = eiH̄zsŪeiHP1sŪ† . (39)

and G(t) = 〈A(t)〉.

6 Concluding Remarks

We investigated the implementation of algorithms for
the simulation of fermionic quantum systems, and gave
an explicit mapping that relates the usual qubit of a
quantum computer to the fermionic modes that we
want to simulate. Our attention focused on the so-
called sign problem. It is a problem appearing in at-
tempts to simulate classically the dynamics of quan-
tum systems. We reviewed the origin of this prob-
lem and showed how this problem is avoided in quan-
tum computing simulation. The evolution of quantum
computers are intrinsically quantum mechanical and
this is the main difference with a classical computer
that allows one to solve the sign problem. We studied
sources of errors in a quantum computer, such as gate
imperfections and the expansion of the evolution op-
erator, and argued that they would not open a back
door to a problem similar to the sign problem.
We gave a very general definition of what a model of

quantum computation is. In particular and because of
our particular interest, i.e., the simulation of fermion
systems, we described the standard and the fermionic
models (“Grassmann Chip”). These are, of course,
not the only ones. Isomorphisms of ∗-algebras allow
one to introduce more “esoteric” models [9]. Indeed,
there is nothing special about the spinless fermionic
model of quantum computation. One could have used
a “hard-core boson” model which admits, in principle,
a realization in terms of He4 atoms. The key point is
the implementation of the physical gates.
Our effort focused on the simulation of the dy-

namics of fermionic quantum systems. However other
problems can be of interest: the thermodynamic or
ground state properties of a Hamiltonian. Even if one
had a quantum computer, it is not clear how to use it
to efficiently compute these quantities. On the other
hand, at present, no proof exists showing that this is
not possible.
An approach that in principle could be used to

compute the spectrum of a Hamiltonian H (e.g., the
ground state) or expectation values of arbitrary ob-
servables is the adiabatic “switching on” in conjunc-
tion with the Gell-Mann-Low theorem [45] of quantum

field theory. The idea simply consists of introducing a
fictitious Hamiltonian

Hε(t) = H0 + fε(t) H1 , (40)

where both H0 and H1 are time independent opera-
tors (H = H0 + H1) and the scalar function fε(t) is
such that limt→±∞ fε(t) = 0 and limt→0 fε(t) = 1, for
an arbitrary adiabatic parameter ε. In other words,
Hε(t = 0) = H and Hε(t = ±∞) = H0. H0 is typ-
ically an operator whose spectrum is known, e.g., an
arbitrary bilinear operator representing a mean-field
solution of H and whose eigenstates can be straight-
forwardly prepared (let’s call it |Φ0〉). The Gell-Mann-
Low theorem asserts that

lim
ε→0

Uε(0,−∞)|Φ0〉
〈Φ0|Uε(0,−∞)|Φ0〉 =

|Ψ0〉
〈Φ0|Ψ0〉 (41)

if the state whose limit one is performing admits a
series expansion in a coupling parameter characteriz-
ing the strength of H1. This formal device generates
the eigenstate adiabatically connected to |Φ0〉. The
theorem does not guarantee that if |Φ0〉 is the ground
state of H0 then |Ψ0〉 is the ground state of H. If the
conditions of the theorem are satisfied then computa-
tion of the spectrum of H is straightforward. To our
knowledge this approach has never been implemented
in practice.
The work presented here is only a first step in a pro-

gram investigating the simulation of quantum systems
using quantum computers. We have given a rather
explicit algorithm for a simple problem and we will in-
crease the complexity of the problems in the work to
come. An interesting problem would be to provide al-
gorithms to test for superconductivity in systems such
as the Hubbard model. Such simulations using clas-
sical computers cannot unequivocally answer this im-
portant question because of the sign problem, but a
quantum computer could.
Work at Los Alamos is sponsored by the US DOE

under contract W-7405-ENG-36.
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