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Abstract

A quantum lattice gas representation is determined for both the non-linear Schrédinger (NLS) and Korteweg—de Vries (KdV)
equations. There is excellent agreement with the solutions from these representations to the exact soliton—soliton collisions
of the integrable NLS and KdV equations. These algorithms could, in principle, be simulated on a hybrid quantum-classical
computer.
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1. Introduction

The study of solitons [1-5] has impacted such diverse fields as plasma physics, nuclear/particle physics,
molecular biology, geology, meteorology, oceanography, astrophysics, cosmology, semi-conductor physics and
even to the study of protein systems and neurophysiology. The fundamental non-linear equation and its subsequent
solution via inverse scattering that spawned such research was the Korteweg—deVries equation (KdV)
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first derived to explain solitary wave propagation in shallow water. The exact 2-soliton solution of Kd\foralid
all timesis:

2(b1 — bo) (brsecR[ /% (x — 21bp)] + bz cosech /% (x — 21b7)])
(v2Bzcoth{ /% (x — 21b2)] — /2By tant],/% (x — 2:b)])?

)

YKav (x, 1) = —

* Corresponding author.
E-mail addressvahala@niv.physics.wm.edu (G. Vahala).

0375-9601/03/$ — see front mattér 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0375-9601(03)00334-7


http://www.elsevier.com/locate/pla

188 G. Vahala et al. / Physics Letters A 310 (2003) 187-196

for arbitraryb1 > 0 andb, > 0.
Another fully integrable equation that ubiquitously arises in weakly non-linear systems whose wave dispersion
relation is a function of amplitude is the (complex, “cubic”) non-linear Schrddinger (NLS) equation

oy 19%y ,
iS5+ 5 VI v =00 with V[jy(] =y ®)

The soliton solutions of NLS, in particular, are playing a considerable role in non-linear optics [6] and
information transfer for application to optical computers [7]. The 1-soliton solution to Eq. (3) is

UNLS(x, 1) = av/2 exp{i { bxv2 - (b—z - az)t}] -secha(xv/2 - br)] (4)

2 4

with two free parameters andb. These parameters independently control the soliton sgeged?) and soliton
amplitude ¢+/2), unlike the KdV soliton where its speed and amplitude are coupled. A 2-soliton solution to NLS
cannot be written down as compactly.

Both NLS and KdV form an excellent set of equations on which to test new algorithms since solitons retain their
identity (amplitude and speed) following a soliton—soliton collision, suffering only a definite phase shift induced
by the collision itself. These new algorithms can then be extended and applied to non-integrable problems of
turbulence in fluids and plasmas.

Here we will examine quantum lattice gas representations of these equations, representations that are
unconditionally stable and ideal for implementation (and parallelization) on a hybrid quantum-classical computer
[8] as well as on a classical computer. Other quantum lattice gas algorithms [9-14] have been considered, but not
in the solution of solitons. These quantum lattice gas algorithms can, in principle, be modeled on an NMR quantum
computer [15-19]. The exponential speed-up over classical computers arises from the quantum entanglement of
qubits. In Section 2 we briefly summarize the quantum lattice gas algorithm for 2 qubits/lattice site—a model
first introduced in the study of the Schrédinger equation [13]. This is then generalized to handle both NLS and
KdV equations. 2-soliton collisions are then studied with this algorithm in Section 3, including the non-integrable
quadratic NLS which yields soliton turbulence.

2. Quantum lattice gasrepresentation for NLS and KdV eguations

For simplicity, we restrict ourselves to one-dimensional systems and discretize the spatial domailaitibe
nodes. To each lattice nodene can associate a basis ket so that the wave functioyr

L
W)= celxe), (5)
(=1

wherecy = (x¢|v) is the probability amplitude associated with the ket.
We introduce 2 qubits at each lattice nadéq’), a = 0, 1. Each qubit is a two-level quantum system

. 2 2
|lgl) = af10) + BLIL),  with ||+ |[Bt]"=1 a=0,1¢=1,...,L. (6)
In the number representation one can employ binary indexing for the basis set
|n(1)n%ngn§ .. né‘n{‘), wherenf; =0orl Va,t. 7

We can restrict ourselves to the one-particle sector in which the basis set elements in Eq. (7) havegpthane
is 1 while all the othen! are zero. There arel2such elements which can be labeled using the binary scheme
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|22¢+ay ¢ =1, ... L,a=0,1. Rewriting Eq. (5) in this binary scheme

L 1
W) =D Earra|227HH). ®)

£=1a=0
Since for each position két,) there are two binary elemen&*—1) and|22‘) we make the assignment
ce=4&x-1+Ex 9)
S0 as to permit interference effects.

2.1. Unitary collision operator

To evolve the wave function in time a quantum unitary operﬁds constructed from a tensor product of
guantum gates, each independently applied on a site-to-site basis

L
C=Q) .. (10)
(=1

Quantum entanglement arises from the on-site local unitary collision opéfauming on the 2 qubits per node;
i.e., Uy acts on the 4 on-site basis kets
|0) ® |0) = 1000, 10) ® |1) = 10100, 11) ® |0) = 10010, 1) ® |1) = [0003.

In particular,ﬁg acts on the on-site két) = |0) ® [1) + |1) ® |0) = |0110. A local equilibriu/\m can be associated
with this on-site unitary collision operator|if) is an eigenvegor o@ with unit eigenvalueU;|v) = |v).
To recover NLS, we introduce the square-root-of-swap ate: U on a site-by-site basis [13]

1 0 0 O

=
[Eny
+

—i

Unis = 07 7 0 (11)
NLS = 1+ 1=
2 2
0 O 0 1

In the number representatitb?ms acts on the ket22¢~1) and|2%) on the site{x,}. Moreover, a Hamiltonian
representation for this unitary quantum gétg s can be achieved from appropriate tensor products of the Pauli
spin matrices

o I L N Y

for qubits ‘1’ and ‘2"

~ im im
Unis = exp[g] exp[— ) (leaxz + Gyloyz + Uzlcrzz)]. (13)
Note thatUg, s = I, the identity operator so that$, s|v) = |v).
However, to recover the KdV equation, the appropriate unitary on-site collision opétatol/ is the square-
root-of-NOT gate

1 0 0 O
o L+ L o
Ukdv = 0 ﬁl Jf ol (14)
V2 V2
0 O 0 1
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which in the Hamiltonian representation formed from tensor products of the Pauli spin matrices is
~ im
Ukgv = exp|:—§ (leayz — Gylcrxz)] (15)
2.2. Unitary streaming operator
The next step of the quantum lattice gas algorithm is to stream the post-collision on-site ket to nearest neighbor

sites. The (unitary) streaming operafaris defined as a global shift to the right of only the 1st qubit on each lattice
node, i.e.,

L-1
S = l_[ 20—1,20+1, (16)
=1

where x2,-1.2¢+1 is independent of and in the number representation shifts the amplitude of thegketl) on
site {x¢} to the ket|22¢*1) on site{x¢,1}. In matrix form, the qubit streaming operatpris a 2 x 22 (unitary)
permutation matrix

(17)

>

I

o o
= OO
OoOr O
o o

0 0O

ThusU operates on the on-site qubits whjteoperates on the 1st qubit of neighboring sites. Hence the total
collision matrixC does not commute with the streaming operatoiSimilarly, we introduce the streaming operator
S» that gives a global shift to the right of the 2nd qubit on all the lattice nodes:

L-1
So=[1 Ree.2e42. (18)
¢=1

2.3. Introduction of the potential field

It has been shown [9,13] that the effect of an external potektia) can be modeled by the introduction of a
local phase change to the system wave function

Y(x, 1) > exgiV(x)At]y(x, 1), (19)

whereAr is the time advancement after each step of the algorithm.
2.4. Algorithm for NLS

We consider the following collide-stream sequence of unitary operators
W+ AD) = S CSC ST T8l 5T ES1E ST E8.C (1), (20)

whereS/ is the transpose of;, with S7S; = 7, i = 1,2 andC is based on the unitary collision operaldys,
Eq. (11). The potential field is required to be a function of the wave function itggls = V[|v]].

The continuum limit is defined by scaling the spatial shift between neighboring nodes@gshethe time
advancemenir = O (¢2) and Vs = €2V[|¥[]. In the limite — 0, it can be shown using M HEMATICA that
the Eq. (20) sequence reduces to the NLS equation
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oy 0%y
i+ 5 T VIV =0+ 0(e?), ase— 0. (21)

This is just Eq. (3) under a trivial rescaling of Note that the error i® (¢2).
2.5. Algorithm for KdV

For KdV the following collide-stream sequence is utilized
Y+ An)=S51.CF . 8T C . ST C+ . 5,C.57C. 5,8+ 518 . ST CHy ), (22)

where the collision operat@, and its adjoinf+, are based on the unitary collision opera&\tp(dv, Eq. (14). To
recover KdV, the potential function is now required to be a functiobofox.

The scaling in the continuum limit is: spatial scade), time scaleAr = O (¢3) and Vkgy = ie3%, ase — 0.
In this limit, Eq. (22) reduces to the KdV equation

EYs v 133y
WJ””EJFEW:O*O@Z)' (23)

It should be noted that the collide-stream sequence, Eq. (22), interlaces the streaming of qubit 1 and qubit 2
between the respective collision operator. This results in an accurate representation of the KdV equation to errors
0(£?). The KdV equation has a linear dispersive term (the 3rd spatial derivative) but no dissipative term (the 2nd
spatial derivative is absent). The 2nd spatial derivative is eliminated by the interlacing of the collision oaerator
with its adjointf*, and it is this which permits the time scaling = 0 (¢%).

3. Simulation resultsfor NL S and KdV using the quantum lattice gas algorithms

We shall first consider the NLS equation, both the integrable cubic NLS as well as the non-integrable quadratic
NLS. For our NLS simulations we take the initial profile

b b
V(x,t0=0)=av?2 ex;{i Ex} -secha(x — x0)| + a2 ex;{i %x] -sechai(x — x1)] (24)
with a1 = 24 andb = —b1 > 0. xg andx1 are the initial location of the soliton peaks. For the integrable cubic NLS,
Ay Y 2
T =0 25
lat+ax2+|1ﬂ| 14 (25)

this is an exact solution for two isolated non-overlapping solitons moving with the same speed towards each other,
with one soliton having twice the amplitude of the other (see Figy Ly, ro = 0)|).

3.1. Integrable cubic NLS

In Fig. 1, the soliton—soliton collision is shown at time incrementa o= 30K . We see excellent preservation
of the solitons’ shape and speed before and after collision. The phase shift induced in the two solitons by their
collision is evident at times. Both solitons are shifted forward with the lower amplitude soliton experiencing a
greater phase shift so as to conserve linear momentum. A more detailed view of these collision-induced phase
shifts is shown in Fig. 2 at times= 3T andt = 6T, whereT is the period for the 1-soliton problem, (which for
the simulation parameters hereZis= 180K ). These phase shifts are due to 6 and 12 soliton—soliton collisions,
respectively, and our excellently reproduced by the quantum algorithm.
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Fig. 1. The wave functioiw/ (x, ¢;)| for the cubic NLS for soliton-soliton collision. On a spatial lattice of 6000 nodes, the solitons are initially

(1o = 0) located atr = 1000 andv = 5000. The solitons are non-overlapping at time= 30K and each have retained their structure and speed
(each displacement 1000). Atr, = 60K there is complete soliton—soliton overlap. The post-collision solitons are shomwr=80K and

t4 = 120K and are clearly seen to retain their amplitude and speed. The effect of the collision is seen by the phase shift of both solitons in their
respective directions of propagation. The shift is greater for the lower amplitude soliton.

Collision-Induced Phase Shift Collision-Induced Phase Shift
of Small Amplitude Soliton of Large Amplitude Soliton
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Fig. 2. The collision-induced phase shifts in the smaller amplitude soliton (a) and the large soliton (b). With periodic boundary conditions, the
1-soliton has period” = 180K . The phase shifts are shown at timeB @&fter 6 soliton—soliton collisions) andr6(after 12 soliton—soliton
collisions).
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Now the integrable cubic NLS has an infinite set of conservation laws [20]. The lower even order polynomial
conservation integrals are

2

particles So=/dx]1/f(x,t) (26)

energy Szzfdx[zl%m
X

Our quantum lattice gas algorithm conserves the wave function normaliz&gidn,2.5 x 10~ and the energy
S,t025x% 1077,

2 4 4
—éyw(x,z)| } (27)

3.2. Non-integrable NLSV[|y|] = ||

For a linear potential, the NLS equation

oy %y

zat+ax2+|w|.w_0 (28)
is non-integrable, with ‘particle’ conservatidig(r) = const butS, = S2(¢) is no longer a constant of the motion.
Consider the evolution gi/r| from the 2-‘soliton’ initial condition, Eq. (24), Fig. 3(a). We find that the initial sech-
profiles rapidly become unstable and break up into (i) thin large amplitude coherent structures, and (ii) a sequence
of very low amplitude structures superimposed on background noise. This is evideat B (Fig. 3(b)). The
large-scale coherent structures are slowly moving, while the small-scale structures are rapidly moviad.@g,
Fig. 3(c), the large-scale structures have interacted with a sea of rapidly moving small-scale structures. All these
structures, both the large-scale and the small-scale, are soliton-like in that these structures (to leading order) retain
their identity after collision with any other structure. The small-scale structures are turbulent-like, and in higher
order there is some coalescence. There are only a few thin large-amplitude structure. These pulsate at a high
frequency, reminiscent of the pulsation of a bound two-soliton [5], and do exhibit weak coalescence behavior.
These properties are not readily gleaned from the snapshots of the total wave fiy¢tidout are easily deduced
from mpeg movies constructed from the quantum algorithm data. Fig. 3(d) is a snapshipbdtimer = 50K.
Again, one sees the large-scale structures, the small-scale structures and the background noise. In essence, ol
guantum lattice gas algorithm for the non-integrable NLS can be said to generate soliton turbulence, in essential
agreement with the standard split-step Fourier simulation of Jordan and Josserand [21]. This phenomenon is not
dissimilar to the persistence of quasi-steady coherent structures in small scale turbulence in plasma physics.

The large fluctuations in the 2nd (energy) momég&snt) are seen in Fig. 4, while the constafat has a slight

decay of less than 2 103 in the 10X time steps.

3.3. KdV equation

Unlike the NLS solitons, in the KdV case the amplitude and speed of the soliton are coupled—as seen from
Eq. (2). In examining soliton—soliton collision, the two solitons in KdV are both moving in the same direction, but
the larger amplitude soliton moves with the greater velocity. Using the interlacing quantum algorithm, Eq. (22),
we show the results of the collision of two solitons, one with twice the amplitude of the other in Fig. 5(a). One
must work with quite low amplitudes in order to enforce the= O (Ax®)-scaling of KdV. The solitons retain
their structure and speed following the collision. Since an exact solution is known for all times, we simply plot the
difference between the exact solution and the quantum representation solutjiorThis is shown in Fig. 5(b),
again showing very good agreement between the two.
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Fig. 3. The evolution ofy| for the non-integrable NLS Eq. (28) under: (a) the same initial conditions of two isolated soliton solutions of the
integrable cubic NLS Egq. (25). (b) By= 2K, there is rapid break-up of the solitons to sharp spikes together with low amplitude noise that
propagates away from these spikes. (c)/By 10K, the (few) large amplitude spikes have quasi-soliton-like collision properties, as do the
(many) small amplitude spikes superimposed on a noise background. The small amplitude spikes move rapidly throughout the domain while
the large amplitude spikes have very low velocity. To leading order, during large—large, large—small, small-small spike collisions the spikes
retain their identity. On alonger time scale, some large amplitude spike—spike coalescence occurs, lefavjrexhiilgiting intermittent soliton
turbulence.
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Fig. 4. The time evolution of the 2nd momesii(z), Eq. (27), for the non-integrable NLS, in which it is not a conserved quantity. However, the
0th moment is conserved and this is verified by our algorithm to within 0.2%-b$00K .
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Fig. 5. The KdV soliton—soliton collision. (a) Initial statg at time ¢, with the post collisionyr at time¢. (b) Plot of yoLg(x,tf) —
VEXACT (X, 15) at timet p. Typical relative error is less thad (10-3).
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