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1 Introduction

The one-band Hubbard model [1] describes a system of spin one-half fermions
on a lattice by the Hamiltonian

H = −t
∑
〈ij〉σ

â†
iσâjσ + U

∑
i

ni↑nj↓ + UNe, (1)

where â†
iσ and âiσ are the Wannier fermionic creation and destruction operators

creating and destroying an electron of spin σ at site i of the lattice. The physical
meaning of each term comprising the Hubbard Hamiltonian is straightforward.
The first term of Eq.( 1). the kinetic energy, accounts for electron tunneling from
site j to site i and thereby reduces the energy of the system by a factor t for each
tunneling event. The site summation denoted by 〈ij〉 is over all bonds of the
lattice. In our investigation we restrict ourselves to nearest-neighbor tunneling
or “hopping”. The interaction part of the Hubbard Hamiltonian accounts for
the Coulomb interaction between two electrons residing on the same site and
therefore is a simplification of the full Coulomb interaction term

Hint =
∫
d3rd3r′ψ̂†(r)ψ̂(r)V (r − r′)ψ̂†(r′)ψ̂(r′), (2)

where ψ̂(r) is the field operator at the space point r. The last two terms
of Eq.( 1) are obtained from Eq.( 2) if one substitutes for the field operator
a linear combination of Wannier states, denoted φiσ(r), as follows, ψ̂(r) =∑

iσ âiσφiσ(r). U denotes the intra-site matrix elements of the Wannier states so
that the significant “short-ranged” part of the Coulomb interaction is modeled.
Eq.( 2) reduces to

Hint = U
∑
iσσ′

niσniσ′ = U
∑

i

ni↑nj↓ + U
∑
iσ

n2
iσ. (3)

The last term of Eq.( 3) is a constant self-energy, UNe, where Ne is the total
number of electrons, because n2

iσ = niσ for fermions [2]. Since this term only
causes a constant energy shift of the spectrum we will choose to ignore it in any
eigenvalue plots.

Obtaining exact analytic solutions of the Hubbard model is difficult. Exact
solutions are possible for certain cases and limits, for example when U/t = 0
or U/t is large, the “strong-coupling” limit where doubly occupied sites are
effectively prohibited. One theoretical approach involves altering the Hubbard
Hamiltonian by a unitary transformation to re-express it in a t/U expansion [3].
The lowest order terms of this expansion are kept in the large-U limit. This is
called t-J model and has recently received much attention[4].

Alternatively, numerical approaches to solve the Hubbard and t-J models
on finite-size clusters abound. These include non-perturbative quantum Monte
Carlo simulations on lattice sizes up to 8 × 8 [5] and exact diagonalization
methods [7] usually using the Lanczos algorithm [6]. Falicov has pioneered the
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use of group-theoretic techniques to simplify the exact diagonalization problem
[8]. In addition to employing point group operations to block diagonalized
the Hamiltonian matrix of elements he has focused on employing more general
operations of the cluster-permutation group. These permutation operations are
available only because of the small finite size of the cluster. The advantage of
cluster-permutations is greatest for N = 8.

The approach we present for investigating the one-band Hubbard model is
best classified as a symbolic method with application to small clusters. Unlike
the theoretic approaches, the symbolic approach gives exact information for all
values of the parameters. However, in contrast to numerical approaches, the
symbolic approach suffers from a limitation imposed by the inherent computa-
tional overhead of symbolic manipulations. As a result, for the time being, we
are limited to very small cluster calculations. In this paper we explore only up
to the 2 × 2 cluster.

In the symbolic approach, we first define manipulation rules, herein termed
production rules, for the Wannier creation and annihilation operators allowing
these operators to act on any general state vector. Building upon these “elemen-
tary” production rules, we implement new production rules to affect more com-
plex operations. This ability to form a hierarchy of operations is an advantage of
the symbolic approach, giving flexibility to define any quantized operator. For
example, we could have just as easily worked with the t−J Hamiltonian in this
investigation in place of the Hubbard Hamiltonian of Eq.( 1). One of the more
interesting operators we have implemented in this way is a “site-interchanger”,
discussed in detail later.

Now here are a few words about organization. This paper is divided into two
parts. Part I describes the formalism we have developed to symbolically solve the
Hubbard Hamiltonian for small clusters. Part II presents a summary analysis
of the data we have obtained for the triangular and square clusters. Following
Part I and Part II are three appendices which are included for reference only.
Our findings for these clusters are recorded in Appendices A and B, respectively.
The purpose of Appendix A and Appendix B is to document the bases and the
contents of the Hamiltonian’s smallest blocks which are identified by a definite
symmetry and total-spin and, furthermore, to illustrate the structures involved
in working with these clusters. Finally, Appendix C provides a complete listing
of Mathematica code for the Hubbard package.
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Part I

Formalism
Here we detail the theoretical formalism used to symbolically solve the Hubbard
model for the triangular and square cluster. We first present an overall summary
of the method of solution. We then discuss the implementation of operators used
to block diagonalize the Hamiltonian by symmetry and total-spin. These are
a fermionic site-interchange operator and the total-spin-squared operator, re-
spectively. Finally, we discuss the implementation of the second quantized form
of Wannier creation and annihilation operators in the number representation,
which is the foundation of our formalism.

2 Method of Solution

The first step in solving the Hubbard model for small clusters, given a lattice of
size N and number of electrons Ne, is to determine a set of basis states. Since
the z-component of the spin commutes with the Hamiltonian, we have chosen
to work with a set of basis states in the number representation with a given Sz.
This is done for convenience since one can immediately determine Sz for any
such state by inspection. Throughout this paper we shall denote an Sz basis
by the symbol: {φn}. As an example of the size of the basis, in the case of
half-filling, where Ne = N , for the triangular and square clusters there are nine
and 36 states, respectively. The triangular cluster possesses the C3v point group
symmetry and the square C4v.

Table 1: C3 and C3v Character Table
C3 E C3 C2

3
A 1 1 1
E 1 ε ε∗

E 1 ε∗ ε

C3v E 2C3 3σv

A1 1 1 1
A2 1 1 -1
E 2 -1 0

Table 2: C4 and C4v Character Table

C4 E C4 C2 C3
4

A 1 1 1 1
B 1 -1 1 -1
E 1 i -1 -i
E∗ 1 -i -1 i

C4v E 2C4 C2 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0

The second step is to determine matrices representing the point group oper-
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ations in the basis {φn}. This is accomplished by successively employing site-
interchange operations, as detailed below, to rotate or reflect any particular state
according to the appropriate group operation desired. Let us denote these vari-
ous operations by the generic symbol R. The C3v group has six group operations
and three irreducible representations, and C4v has eight and five, respectively.
See Table(1) and Table(2). Let us denote the ith irreducible representations by
ΓR

i . Given that we have constructed a reducible matrix representation, denoted
{MR

mn}, of the symmetry group in our basis {φn}, we then construct projection
operators, denoted PΓi

mn, for each of the irreducible representations of the group
[8]. This is is done as follows

PΓi
mn =

∑
R

tr(ΓR
i )MR

mn, (4)

where tr(ΓR
i ) is the character or trace listed in the ith row and Rth column

of the character tables. We can also determine the number of times the ΓR
i

irreducible representation occurs in MR
mn by knowing the character, tr(MR

mn)
[10]. In practice the useful quantity bi is determined by

bi =
∑
R

tr(ΓR
i )tr(MR

mn), (5)

giving the size of the ith block of the resulting block-diagonalized Hamiltonian
matrix of elements.

The third step is to apply PΓi
mn onto the {φn} basis to find linear combinations

that possess a definite symmetry

ψΓi
m =

∑
n

PΓi
mnφn. (6)

Throughout this paper we shall denote a “symmetry” basis by the symbol:
{ψΓi

n }. Specifically, for the case of C3v, we obtain four sets of states: {ψA1
n },

{ψA2
n }, {ψE

n }, and {(ψE
n )∗}. For the case of C4v, we obtain six sets of states:

{ψA1
n }, {ψB1

n }, {ψA2
n }, {ψB2

n }, {ψE
n }, and {(ψE

n )∗}. The E-representation always
appears twice 1. In the {ψn} basis the Hamiltonian therefore decouples into four
diagonal blocks for the triangular cluster and six diagonal blocks for the square
cluster. The group theory has helped in reducing the complexity of the problem.

The forth step is to try to block diagonalize the Hamiltonian still further.
This is done by calculating the matrix of elements of the total-spin-squared
operator, SS, in each of the {ψΓi

m } sub-basis and diagonalizing this matrix to
determine linear combinations of the ψΓi

m states which have a definite total-
spin, that is, we find eigenvectors of SS. Let us denote these eigenvectors of SS
as ϕΓi,S

m . Throughout this paper, we shall denote a “total-spin” basis by the
symbol: ϕΓi,S

m . Since SS commutes with the Hamiltonian we thereby partition
each symmetry block into smaller blocks, each having a definite total-spin.

1An important point must be mentioned here. We have found using projection operators
constructed from the C3 and C4 character tables breaks the size of the E-type blocks in two
for the half-filling cases
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The final step is to calculate the Hamiltonian matrix elements in the {ϕΓi,S
m }

bases, and analytically find, if possible, the eigenvalues and eigenvectors of each
resulting “spin-and-symmetry” block and thereby complete the solution. In the
case of the triangle, the largest ϕΓi,S

m block is 3×3 and for the square it is 4×4.

3 Pendleton’s Site-Interchange Operator

All symmetry operations of rotation or reflection are implemented by a partic-
ular successive application of Pendleton’s fermionic “site-interchanger”, which
we denote by χ̂ij where the interchange of electrons occurs between sites i and
j. The content of this section was originally produced by Pendleton [11]. We
wish to construct χ̂ij from the Wannier creation and annihilation operators
so as to correctly handle any necessary phase change due to the fermion anti-
commutation relations. The simplest implementation of χ̂ij should involve only
products of âiσ and â†

iσ.
We require that χ̂ij

2 = 1, that the site-interchanger conserve the number
of particles, [χ̂ij , N̂ ] = 0, that χ̂ij is hermitian, and that χ̂ij | 0〉 = | 0〉. Let us
assume we have a one-particle state φ1e = â†

mσ| 0〉 where m = i or j. A first
guess at the form of a spin-dependent interchange operator between sites i and
j would be

χ̂ijσ = â†
jσâiσ + â†

iσâjσ. (7)

This acts correctly on φ1e. The problem with Eq.( 7) is that its application on
to the vacuum violates our requirement that χ̂ijσ| 0〉 = | 0〉. This is remedied
easily enough by slightly modifying our first guess

χ̂ijσ = â†
jσâiσ + â†

iσâjσ + 1. (8)

Although Eq.( 8) repairs the vacuum problem, now its application onto φ1e

would interchange the electron but incorrectly would also give back φ1e, an
extra unwanted electron. We administer the final remedy by including two
more terms that have the effect of subtracting off the unwanted electron

χ̂ijσ = â†
jσâiσ + â†

iσâjσ + 1 − â†
iσâiσ − â†

jσâjσ. (9)

Although we have constructed Eq.( 9) by considering only a one-particle
state, a remarkable fact is that χ̂ijσ works on any arbitrary state.

Let us investigate the properties of χ̂ijσ further. Let us rewrite Eq.( 9) by
factoring the creation operators,

χ̂ijσ = 1 + â†
jσ(âiσ − âjσ) + â†

iσ(âjσ − âiσ), (10)

which leads one to write

χ̂ijσ = 1 − (â†
jσ − â†

iσ)(âjσ − âiσ). (11)
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Now of course, one is motivated to define the following unconventional creation,
annihilation, and number operators

Âijσ =

√
1
2
(âjσ − âiσ) (12)

Â†
ijσ =

√
1
2
(â†

jσ − â†
iσ) (13)

N̂A
ijσ = Â†

ijσÂijσ (14)

so that Eq.( 11) may be written as

χ̂ijσ = 1 − 2N̂A
ijσ. (15)

Our new operators no longer work in the usual number representation and
instead form mixed states

Â†
ijσ| 0〉 =

√
1
2

(| jσ〉− | iσ〉) ≡| Âijσ〉. (16)

The number operator satisfies (N̂A
ijσ)2 = N̂A

ijσ and consequently we have

χ̂ijσ
2 = (1 − 2N̂A

ijσ)2 = 1 − 4N̂A
ijσ + 4N̂A

ijσ

2
= 1, (17)

satisfying another of our requirements.
Pendleton’s interchanger can be written in exponential form

χ̂ijσ = ezN̂A = 1 + zN̂A
ijσ +

z2

2!
N̂A

ijσ

2
+ · · · = 1 +

(
z +

z2

2!
+ · · ·

)
N̂A

ijσ (18)

or
χ̂ijσ = 1 + (ez − 1) N̂A

ijσ. (19)

Comparing Eq.( 15) with Eq.( 19), allows us to choose z = πi, so we have our
site-interchanger,

χ̂ijσ = χ̂ijσ = eiπN̂A , (20)

appearing as a rotation by 180◦. To affect a complete site-interchange is straight-
forward

χ̂ij ≡ χ̂ij↑χ̂ij↓. (21)

In practice Eq.( 9), Eq.( 20), not is substituted into Eq.( 21) to perform any
calculation since we prefer to work in the usual number representation. For the
triangular cluster, we implement the C3v point operators as follows

R̂C3 = χ̂12χ̂23 (22)

R̂C2
3 = χ̂23χ̂12 (23)

R̂σ(1)
v = χ̂23 (24)

R̂σ(2)
v = χ̂31 (25)

R̂σ(3)
v = χ̂12, (26)
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Figure 1: Symmetry axes for the triangular and square clusters.

which are 120◦ and 240◦ rotations, and reflections about sites 1, 2, and 3,
respectively. For the square cluster, we implement the C4v point group operators
as follows

R̂C4 = χ̂34χ̂23χ̂12 (27)
R̂C2 = χ̂23χ̂12 (28)

R̂C3
4 = χ̂12χ̂23χ̂34 (29)

R̂σ(13)
v = χ̂24 (30)

R̂σ(24)
v = χ̂13 (31)

R̂σ
(13)
d = χ̂12χ̂34 (32)

R̂σ
(24)
d = χ̂14χ̂23, (33)

which are 90◦, 180◦ and 270◦ rotations, and reflections about two diagonals and
the vertical and horizontal, respectively.

4 Implementation of the SS Operator

The site-specific total-spin operator is compactly written in terms of the Wannier
creation and annihilation operators and the Pauli spin matrices as

~Si =
1
2
â†

iα~σαβ âiβ , (34)

where h̄ = 1, ~σ = (σx, σy, σz), and

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.
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The components of Eq.( 34) are then

~Six = 1
2 â

†
iα~σ

x
αβ âiβ =

1
2
(â†

i ↑âi↓ + â†
i ↓âi↑) (35)

~Siy = i
2 â

†
iα~σ

y
αβ âiβ =

1
2
(â†

i ↓âi↑ − â†
i ↑âi↓) (36)

~Siz = 1
2 â

†
iα~σ

z
αβ âiβ =

1
2
(â†

i ↑âi↑ − â†
i ↓âi↓). (37)

With Eqs.( 35) - (37) the square of the total spin operator is readily constructed

SS =
N∑

i=1

N∑
j=1

(
~Six

~Sjx + ~Siy
~Sjy + ~Siz

~Sjz

)
. (38)

where SSϕ = S(S + 1)ϕ.

5 Production Rules for Second Quantization in
the Number Representation

Let us denote the four possible states of a single site by the symbols: p =↑,
m =↓, d =↑↓, and e =empty. The four basic site-dependent Wannier creation
and annihilation operators can be defined by the following 20 production rules

a†
p[p] = 0 ap[p] = e a†

m[p] = d am[p] = 0
a†

p[m] = d ap[m] = 0 a†
m[m] = 0 am[m] = e

a†
p[d] = 0 ap[d] = m a†

m[d] = 0 am[d] = p
a†

p[e] = p ap[e] = 0 a†
m[e] = m am[e] = 0

a†
p[0] = 0 ap[0] = 0 a†

m[0] = 0 am[0] = 0

which embody the exclusion principle. A state is considered to be an ordered
list of symbols, φ =| s1, s2, . . . , sN 〉 where si = p, m, d, or e. The number of
elements in the list equals the number of sites, N . The production rules for â†

iσ

and âiσ are

a†[σ, i, | s1, s2, . . . , sN 〉] =
{

ε | s1, s2, . . . , a†
p[si], . . . , sN 〉, if σ = p

ε | s1, s2, . . . , a†
m[si], . . . , sN 〉, if σ = m

(39)

a†[σ, i, 0] = 0. (40)

a[σ, i, | s1, s2, . . . , sN 〉] =
{

ε | s1, s2, . . . , ap[si], . . . , sN 〉, if σ = p
ε | s1, s2, . . . , am[si], . . . , sN 〉, if σ = m

(41)

a[σ, i, 0] = 0, (42)

where i = 1, . . . , N and ε = ±1 is a multiplicative phase determined by anti-
commutation up to the indexed site. That is,

ε =
i∏

m=1

δ[si], (43)
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where δ[p] = −1, δ[m] = −1, δ[d] = +1, and δ[e] = +1. Furthermore, to
correctly implement the anti-commutation relations for fermions, ε must be
multiplied by −1 in the following two cases: (1) when a down-spin is created on
a site currently occupied by an up-spin; and (2), when a down-spin is destroyed
on a site currently doubly occupied. These two rules are needed because our
definition of a doubly occupied site, d =↑↓, implies a definite ordering of spins
which must be preserved for the symbol d to be non-ambiguous.

Using the production rules Eqs.( 39)-(42), we define rules for all other quan-
tum operators of interest, such as χ̂,SS, Ĥ, and âk. Appendix C provides a full
listing of all the source code for our symbolic approach.
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Part II

Analysis
The purpose of this part is to analysis our findings for the triangular and square
cluster recorded in Appendices A and B. We check our data for expected sym-
metries of the Hubbard Hamiltonian and find that our formalism is consistent.
We check a theorem proved by Nagaoka concerning whether or not the ferromag-
netic state above and below half-filling is the ground state. Then we compare
spin-correlations of the ground states of the triangular and square clusters at
half-filling. Finally we give some examples and interpretation of eigenvalue and
photoemission energies as a function of U/t.

6 Double-Empty Symmetry Above and Below
Half-Filling

It is well known that, energetically, the Hubbard Hamiltonian possesses a sym-
metry above and below half-filling. This symmetry ensures a one-to-one corre-
spondence between states above half-filling with those below. The structure of
the states, their exact symmetry and total-spin, above and below half-filling is
identical provided that the respective Ŝz bases, {φn}, are labeled so that any
state above half-filling with a particular doubly occupied site corresponds to a
state below half-filling with no electrons on that site.

Lets consider the data presented in Part III for the triangular cluster and,
further, consider the cases with Ŝz = 0 above and below half-filling, Appendices
A.2 and A.4. The first point to note is that {ψNe=4,Sz=0

n } can be mapped to
{ψNe=2,Sz=0

n } by taking d → e. The structure of the states are seen to be
identical by comparing Eqs.(78-81) to Eqs. (85-88). Finally, the energies are
also seen to be isomorphic by taking t → −t and if, above half-filling, we shift
the energy down by 3U . The origin of this shift is two-fold: (1) the second term
of the Hubbard Hamiltonian, Eq.(1), causes a shift of U since d → e; and (2),
the third term of the Hamiltonian causes a shift of 2U in our case. The same
symmetry is seen to exist for the cases with Ŝz = 1, Appendices A.3 and A.5

For the case of the square cluster this symmetry is essentially the same,
differing only in that the asymmetry in t is not present. The underlying reason
for difference between the triangle and square arises from the freedom we have
to divide the square into two sub-lattices such that for any lattice point has
nearest-neighbors belonging to the co-lattice [12]. Then a phase difference of
−1 between the wave function of the sub-lattices could account for a change in
the sign of t.
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Figure 2: Below half-fillng for the triangular cluster. Variation with U of: (a) lowest
eigenvalues’ for S = 0 and S = 1; and (b) coefficients of λNe=2,Sz=0

A12
= αψ1 +βψ2 eigenstate.

7 Check of Nagaoka’s Theorem

Let us consider the triangular cluster below half-filling, Ne = 2. The ground
state of this system could have either Sz = 0 or 1. In the Sz = 0 case, the lowest
energy state has A1 symmetry and total-spin S = 0. It is an eigenvector of the
Hamiltonian block

1√
6

(| emp〉− | pem〉+ | mpe〉− | epm〉+ | mep〉− | pme〉)
1√
3

(| dee〉+ | ede〉+ | eed〉)

}
→ 〈HA1

S=0〉 =

(
−2t 4t√

2
4t√
2

U

)
.

(44)
In comparing Eq.( 44) with the results presented in Appendix A, note that we
have subtracted 2U from the diagonals of the matrix elements for simplicity.
Diagonalizing Eq.( 44), we fine the lowest energy state to be

ΨSz=0,S=0
A12

= (45)
α√
6

(| emp〉− | pem〉+ | mpe〉− | epm〉+ | mep〉− | pme〉) +

β√
3

(| dee〉+ | ede〉+ | eed〉) ,

where the coefficients α and β are plotted in Fig.(3:b).
In the Sz = 1 case, the lowest energy state, the ferromagnetic state, has E

symmetry and total-spin S = 1

ΨSz=1,S=1
E = (2 | epp〉+ | pep〉− | ppe〉)/√3 → 〈HE

S=1〉 = (2U − t) .
(46)

We see from Fig.(3:a), below half-filling the ferromagnetic state is not the ground
state of the system for all values of U . Nagaoka has proven, in the limit U → ∞,
for an fcc or hcp lattice the ferromagnetic state with the maximum total-spin
would not be the ground state of the system [12]. Our results are in agreement
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with this statement, if we make an analogy between our triangular cluster and
fcc or hcp.

Let us see in more detail why ΨSz=0,S=0
A12

is indeed the ground state of the
system. Let us consider the U = 0 limit. Here the Hubbard Hamiltonian has
only the kinetic energy term

H = −t
∑
〈ij〉σ

â†
iσâjσ (47)

which we can transform to k-space to determine the band energy. To convert
from Wannier states to Bloch states we use the discrete Fourier transform

âiσ = 1√
N

∑
k e

−ikRi âkσ â†
iσ = 1√

N

∑
k e

ikRi â†
kσ, (48)

and to do the inverse we use

âkσ =
∑

{Ri} e
ikRi âiσ â†

kσ =
∑

{Ri} e
−ikRi â†

iσ, (49)

where the possible momenta are k = 2nπ/Na and lattice vectors are Rn = an,
n = 0, 1, .., N −1 and a is the cell-size. Substituting Eq.( 48) into Eq.( 47) gives

H = − t

N

∑
〈ij〉σ

∑
k

eikRi â†
kσ

∑
k′
e−ik′Rjak′σ (50)

= − t

N

∑
i

∑
σ

∑
kk′

â†
kσ

∑
k′
âk′σe

ikRi

(
e−ik′(Ri+a) + e−ik′(Ri−a)

)
(51)

where we have went from Eq.( 50) to Eq.( 51) by replacing the sum over the
bonds, 〈ij〉, by a sum only over the lattice sites since for nearest-neighbor in-
teractions, Rj = Ri ± a in the 〈ij〉 sum. We then have

H =
∑
kσ

εkâ
†
kσâkσ (52)

where
εk = −2t cos ka (53)

and where we have used

1
N

∑
〈ij〉σ

∑
k

ei(k−k′)Ri = δkk′ . (54)

Referring to Fig.(3:a,b) clearly for Ne = 2 the Sz = 0 state has lower energy,
−4t with the Sz = 1 has energy −t. This agrees with Fig.(2:a). Let us write
the Eq.( 45) at U = 0. Here, expanding about U = 0, we have

α = −
√

2
3

− U

9
√

6
+O(U2) (55)

β =
1√
3

− U

9
√

6
+O(U2) (56)

12
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Figure 3: Lowest Energy Momentum States Above and Below Half-Filling for Sz = 0, 1.

so substituting Eqs.( 55) and ( 56) into Eqs.( 45) gives

ΨSz=0,S=0
A12,U=0 → (57)

1√
9

(| dee〉+ | ede〉+ | eed〉) −√
1
9

(| emp〉− | pem〉+ | mpe〉− | epm〉+ | mep〉− | pme〉) .

Alternatively, we can arrive at Eq.( 57) by constructing the momentum states
depicted in Fig.(3:a) using the Bloch creation operators, Eq.( 49),

â†
k=0↑â

†
k=0↓| 0〉 = (â†

1↑ + â†
2↑ + â†

3↑)(â
†
1↓ + â†

2↓ + â†
3↓) = (58)

| dee〉+ | ede〉+ | eed〉 −
| emp〉+ | epm〉− | mep〉− | mpe〉+ | pem〉+ | pme〉.

Normalizing this by
√

9, we see that Eq.( 58) is indeed identical to Eq.( 57).
Now let us consider the triangular cluster above half-filling, Ne = 4. Like the

case just considered, the ground state of this system could have either Sz = 0
or 1. Remarkably, however, in the above half-filling case the ferromagnetic and
non-ferromagnetic states are degenerate with eigenvalue 5U − 2t, see Appendix
A.2 and A.3. The reason for this degeneracy is depicted in Fig.( 7:c,d). The
degeneracy arises from the fact that εk = −2t cos ka has the same value for
k = 2π/3 and k = 4π/3, an effect our small cluster size.
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8 Examples of Energy Plots

Here we give some examples illustrating the information one may obtain from
energy plots. Let us see what information is contained in an eigenvalue plot such
as Fig.(4). There we have plotted all the energies of the half-filled triangular
cluster as a function of U . We have labeled each curve according to its symmetry.
The A1 and A22 energies are degenerate for all U . In Fig.(5) we have depicted

2 4 6 8 10

-4

-2

2

4

6

8

10

E2 

U 

Energy 

E3 

E1 

A1 

A21 

A22 

 

3t 

0 

-3t 

Figure 4: Eigenvalues for the triangular cluster at half-filling.

all the possible Bloch states for Ne = 3. There are five types of Bloch states
we can possibly choose. These, in turn, correspond to the five non-degenerate
energies for finite U plotted in Fig.(4). Consequently, we see why there are only
three non-degenerate energies at U = 0 in Fig.(4): the Bloch states (1), (2),
and (3) have the same energy at U = 0. It is possible to assign each Bloch
state a given symmetry. Immediately, we assign (1) and (5) symmetries E1 and
E2, respectively, since they are the highest and lowest energy states. Then,
we assign (2) with A21 symmetry since from Fig.(4) the energy of this state is
independent of U and we know

ΨA21 =
1√
3

(| mpp〉+ | pmp〉+ | ppm〉) . (59)

Next, we assign (3) with A1 and A22 symmetry since we know that these states
must have a doubly occupied site

ΨA1 =
1√
6

[(| dpe〉+ | edp〉+ | ped〉) + (| dep〉+ | pde〉+ | epd〉)] (60)

ΨA22 =
1√
6

[(| dpe〉+ | edp〉+ | ped〉) − (| dep〉+ | pde〉+ | epd〉)] . (61)
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This explains why A1 and A22 are degenerate for all U . Finally, we then can
explain why the E3 energy is lower than the A1 and A22 energy for finite U .
This is because the E3 state can have a component of Bloch state (4) which is
energetically lower for finite U than (3).
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0 k 

εk 
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εk 
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0 2π/3 4π/3 
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εk 
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0 2π/3 4π/3 
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εk 

-2t 

t 

0 2π/3 4π/3 

0 k 

εk 

-2t 

t 

0 2π/3 4π/3 

0 k 

εk 

ε=3t 

ε=-3t 

ε=0 

ε=0 
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0 k 

εk 

Ε1 

Α21 

Ε2 

Α1,Α22 

(1) 

(2) 

(3) 

(4) 

(5) 

Figure 5: Bloch states with definite symmetry for the triangular cluster at half-filling.

The eigenvalues of the triangular cluster above half-filling, Ne = 4, and
Sz = 0 are the following

λNe=4,Sz=0
A11

=
11U + 2t+

√
(−11U − 2t)2 − 4 (30U2 + 12Ut− 8t2)

2
(62)

λNe=4,Sz=0
A12

=
11U + 2t−

√
(−11U − 2t)2 − 4 (30U2 + 12Ut− 8t2)

2
(63)
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λNe=4,Sz=0
A2

= 5U − 2t (64)

λNe=4,Sz=0
E1

= 5U + t (65)

λNe=4,Sz=0
E2

=
11U − t+

√
(−11U + t)2 − 4 (30U2 − 6Ut− 2t2)

2
(66)

λNe=4,Sz=0
E3

=
11U − t−

√
(−11U + t)2 − 4 (30U2 − 6Ut− 2t2)

2
(67)

and the eigenvalues below half-filling are

λNe=2,Sz=0
A11

=
5U − 2t+

√
(−5U + 2t)2 − 4 (6U2 − 6Ut− 8t2)

2
(68)

λNe=2,Sz=0
A12

=
5U − 2t−

√
(−5U + 2t)2 − 4 (6U2 − 6Ut− 8t2)

2
(69)

λNe=2,Sz=0
A2

= 2U + 2t (70)

λNe=2,Sz=0
E1

= 2U − t (71)

λNe=2,Sz=0
E2

=
5U + t+

√
(−5U − t)2 − 4 (6U2 + 3Ut− 2t2)

2
(72)

λNe=2,Sz=0
E3

=
5U + t−

√
(−5U − t)2 − 4 (6U2 + 3Ut− 2t2)

2
. (73)

Plots of the eigenvalues above half-filling forNe = 4 and Sz = 0 are plotted in
Fig.( 8) with the constant term of the Hubbard Hamiltonian, 4U , subtracted off.
Fig.( 8) shows the variation of the photoemission energies with U . The ground
state energy of the half-filled system has been subtracted off of λNe=4,Sz=0 and
λNe=4,Sz=0.

16



2 4 6 8 10

-10

-5

5

10

15

20
A11 A12 

A2 

E1 E2 
E3 

A11 

A12 

A2 

E1 

E2 

E3 

U 

λ−λG 

Figure 6: Photoemission energies verses U : λNe=4,Sz=0 −λG in black and λNe=4,Sz=0 −λG

in gray.
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A Triangular Cluster Data

In this section we present our findings for the triangular cluster for the following
cases: half-filling, Ne = 3, for Sz = 1

2 ; above half-filling, Ne = 4, for Sz = 0, 1;
and, below half-filling, Ne = 4, for Sz = 0, 1.

A.1 Half-filling: Ne = 3 and Sz = 1
2

For Sz = 1
2 in the case of half-filling where Ne = 3 we have 9 elements in our

bases. We choose our {φn} basis as follows

φ1 =| mpp〉 φ2 =| pmp〉 φ3 =| ppm〉
φ4 =| dpe〉 φ5 =| edp〉 φ6 =| ped〉
φ7 =| dep〉 φ8 =| pde〉 φ9 =| epd〉

In the case of half-filling the {ψn} basis states generated by the C3v projection
operators happen all to be eigenvectors of SS, so here we do not get any reduc-
tion in block size using the total-spin. Therefore, the {ϕn} basis is equivalent
to {ψn}.

A.1.1 A1 State with S = 1
2

ψ1 = (φ4 + φ5 + φ6 + φ7 + φ8 + φ9)/
√

6 → 〈HA1
S= 1

2
〉 = (4U) . (74)

A.1.2 A2 States with S = 1
2 ,

3
2

ψ2 = (φ1 + φ2 + φ3)/
√

3 → 〈HA2
S= 3

2
〉 = (3U) (75)

ψ3 = (φ4 + φ5 + φ6 − φ7 − φ8 − φ9)/
√

6 → 〈HA2
S= 1

2
〉 = (4U) (76)

A.1.3 E States with S = 1
2

ψ4 = (φ1 + εφ2 + ε∗φ3)/
√

6
ψ5 = (φ4 + εφ5 + ε∗φ6)/

√
6

ψ6 = (φ7 + εφ8 + ε∗φ9)/
√

6


 → 〈HE

S= 1
2
〉 =


 3U (ε∗ − 1)t (1 − ε)t

(ε− 1)t 4U (ε∗ − 1)t
(1 − ε∗)t (ε− 1)t 4U


 .

(77)

A.2 Above Half-filling: Ne = 4 and Sz = 0

For Sz = 0, above half-filling where Ne = 4, we have 9 elements in our bases.
We choose our {φn} basis as follows

φ1 =| dmp〉 φ2 =| pdm〉 φ3 =| mpd〉
φ4 =| dpm〉 φ5 =| mdp〉 φ6 =| pmd〉
φ7 =| edd〉 φ8 =| ded〉 φ9 =| dde〉

The {ϕn} and {ψn} basis are equivalent in the A1 and A2 representations, for
n = 1, 2, 3.
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A.2.1 A1 States with S = 0

ϕ1 = ψ1 = (φ1 − φ2 + φ3 − φ4 + φ5 − φ6)/
√

6
ϕ2 = ψ2 = (φ7 + φ8 + φ9)/

√
3

}
→ 〈HA1

S=0〉 =

(
5U + 2t 4t√

2
4t√
2

6U

)
.

(78)

A.2.2 A2 State with S = 1

ϕ3 = ψ3 = (φ1 − φ2 + φ3 + φ4 − φ5 + φ6)/
√

6 → 〈HA2
S=1〉 = (5U − 2t) .

(79)

A.2.3 E States with S = 0, 1

ψ4 = (2φ1 + φ2 − φ3)/
√

6

ψ5 = (2φ4 + φ5 − φ6)/
√

6

ψ6 = (2φ7 − φ8 − φ9)/
√

6

ϕ4 = (ψ4 + ψ5)/
√

2 → 〈HE
S=1〉 = (5U + t) (80)

ϕ5 = (ψ4 − ψ5)/
√

2
ϕ6 = ψ6

}
→ 〈HE

S=0〉 =

(
5U − t −2t√

2
−2t√

2
6U

)
. (81)

A.3 Above Half-filling: Ne = 4 and Sz = 1

For Sz = 1, above half-filling where Ne = 4, we have 3 elements in our bases.
We choose our {φn} basis as follows

φ1 =| dpp〉 φ2 =| pdp〉 φ3 =| ppd〉 . (82)

The {ϕn} and {ψn} basis are equivalent. There are no states in the A1 repre-
sentation.

A.3.1 A2 State with S = 1

ϕ1 = ψ1 = (φ1 − φ2 + φ3)/
√

3 → 〈HA2
S=1〉 = (5U − 2t) . (83)

A.3.2 E State with S = 1

ϕ2 = ψ2 = (2φ1 + φ2 − φ3)/
√

3 → 〈HE
S=1〉 = (5U + t) . (84)
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A.4 Below Half-filling: Ne = 2 and Sz = 0

For Sz = 0, below half-filling where Ne = 2, we have 9 elements in our bases.
We choose our {φn} basis as follows

φ1 =| emp〉 φ2 =| pem〉 φ3 =| mpe〉
φ4 =| epm〉 φ5 =| mep〉 φ6 =| pme〉
φ7 =| dee〉 φ8 =| ede〉 φ9 =| eed〉

The {ϕn} and {ψn} basis are equivalent in the A1 and A2 representations, for
n = 1, 2, 3.

A.4.1 A1 States with S = 0

ϕ1 = ψ1 = (φ1 − φ2 + φ3 − φ4 + φ5 − φ6)/
√

6
ϕ2 = ψ2 = (φ7 + φ8 + φ9)/

√
3

}
→ 〈HA1

S=0〉 =

(
2U − 2t 4t√

2
4t√
2

3U

)
.

(85)

A.4.2 A2 State with S = 1

ϕ3 = ψ3 = (φ1 − φ2 + φ3 + φ4 − φ5 + φ6)/
√

6 → 〈HA2
S=1〉 = (2U + 2t).

(86)

A.4.3 E States with S = 0, 1

ψ4 = (2φ1 + φ2 − φ3)/
√

6

ψ5 = (2φ4 + φ5 − φ6)/
√

6

ψ6 = (2φ7 − φ8 − φ9)/
√

6

ϕ4 = (ψ4 + ψ5)/
√

2 → 〈HE
S=1〉 = (2U − t) (87)

ϕ5 = (ψ4 − ψ5)/
√

2
ϕ6 = ψ6

}
→ 〈HE

S=0〉 =

(
2U + t −2t√

2
−2t√

2
3U

)
. (88)

A.5 Below Half-filling: Ne = 2 and Sz = 1

For Sz = 1, below half-filling where Ne = 2, we have 3 elements in our bases.
We choose our {φn} basis as follows

φ1 =| epp〉 φ2 =| pep〉 φ3 =| ppe〉 . (89)

The {ϕn} and {ψn} basis are equivalent. There are no states in the A1 repre-
sentation.

A.5.1 A2 State with S = 1

ϕ1 = ψ1 = (φ1 − φ2 + φ3)/
√

3 → 〈HA2
S=1〉 = (2U + 2t) . (90)
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A.5.2 E State with S = 1

ϕ2 = ψ2 = (2φ1 + φ2 − φ3)/
√

3 → 〈HE
S=1〉 = (2U − t) . (91)
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B Square Cluster Data

In this section we present our findings for the square cluster for the case of
half-filling, Ne = 4, for Sz = 0.

B.1 Half-filling: Ne = 4 and Sz = 0

For Sz = 0 in the case of half-filling where Ne = 4 we have 36 elements in our
bases. We choose our {φn} basis as follows

φ1 =| mpmp〉 φ2 =| pmpm〉
φ3 =| ppmm〉 φ4 =| mppm〉 φ5 =| mmpp〉 φ6 =| pmmp〉
φ7 =| demp〉 φ8 =| pdem〉 φ9 =| mpde〉 φ10 =| empd〉

φ11 =| dpme〉 φ12 =| edpm〉 φ13 =| medp〉 φ14 =| pmed〉
φ15 =| depm〉 φ16 =| mdep〉 φ17 =| pmde〉 φ18 =| epmd〉
φ19 =| dmpe〉 φ20 =| edmp〉 φ21 =| pedm〉 φ22 =| mped〉
φ23 =| dmep〉 φ24 =| pdme〉 φ25 =| epdm〉 φ26 =| mepd〉
φ27 =| dpem〉 φ28 =| mdpe〉 φ29 =| emdp〉 φ30 =| pemd〉

φ31 =| dede〉 φ32 =| eded〉
φ33 =| ddee〉 φ34 =| deed〉 φ35 =| edde〉 φ36 =| eedd〉

B.1.1 A1 States with S = 0, 1

ψ1 = (φ3 − φ4 + φ5 − φ6)/2

ψ2 = (φ7 − φ8 + φ9 + φ10 − φ11 − φ12 + φ13 − φ14)/
√

8

ψ3 = (φ15 − φ16 + φ17 + φ18 − φ19 − φ20 + φ21 − φ22)/
√

8

ψ4 = (φ23 − φ24 − φ25 + φ26 − φ27 + φ28 + φ29 − φ30)/
√

8

ψ5 = (φ31 + φ32)/
√

2
ψ6 = (φ33 + φ34 + φ35 + φ36)/2

ϕ1 = (ψ2 + ψ3)/
√

2 → 〈HA1
S=1〉 = (5U) . (92)

ϕ2 = ψ4
ϕ3 = ψ1

ϕ4 = (ψ2 − ψ3)/
√

2
ϕ5 = ψ5
ϕ6 = ψ6




→ 〈HA1
S=0〉 =




5U 0 0 0 0
0 4U 2t 0 0
0 2U 5U 4t√

2
2t

0 0 4t√
2

6U 0
0 0 2t 0 6U


 .

(93)
It is interesting that ϕ6 does not mix with any of the other states in its sub-basis.
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B.1.2 A2 States with S = 0, 1

ψ7 = (φ1 − φ2)/
√

2

ψ8 = (φ7 − φ8 + φ9 + φ10 + φ11 + φ12 − φ13 + φ14)/
√

8

ψ9 = (φ15 − φ16 + φ17 + φ18 + φ19 + φ20 − φ21 + φ22)/
√

8

ψ10 = (φ23 − φ24 − φ25 + φ26 + φ27 − φ28 − φ29 + φ30)/
√

8

ϕ7 = ψ7
ϕ8 = ψ10

ϕ9 = (ψ8 + ψ9)/
√

2


 → 〈HA2

S=1〉 =




4U 0 4t√
2

0 5U −4t√
2

4t√
2

−4t√
2

5U


 . (94)

ϕ10 = (ψ8 − ψ9)/
√

2 → 〈HA2
S=0〉 = (5U). (95)

B.1.3 B1 States with S = 0, 1

ψ11 = (φ7 + φ8 + φ9 − φ10 − φ11 + φ12 + φ13 + φ14)/
√

8

ψ12 = (φ15 + φ16 + φ17 − φ18 − φ19 + φ20 + φ21 + φ22)/
√

8

ψ13 = (φ23 + φ24 − φ25 − φ26 − φ27 − φ28 + φ29 + φ30)/
√

8

ψ14 = (φ31 − φ32)/
√

2

ϕ11 = (ψ11 + ψ12)/
√

2 → 〈HB1
S=1〉 = (5U) . (96)

ϕ12 = (ψ11 − ψ12)/
√

2
ϕ13 = ψ13
ϕ14 = ψ14


 → 〈HB1

S=0〉 =




5U −4t√
2

4t√
2

−4t√
2

5U 0
4t√
2

0 6U


 . (97)

B.1.4 B2 States with S = 0, 1, 2

ψ15 = (φ1 + φ2)/
√

2
ψ16 = (φ3 + φ4 + φ5 + φ6)/2

ψ17 = (φ7 + φ8 + φ9 − φ10 + φ11 − φ12 − φ13 − φ14)/
√

8

ψ18 = (φ15 + φ16 + φ17 − φ18 + φ19 − φ20 − φ21 − φ22)/
√

8

ψ19 = (φ23 + φ24 − φ25 − φ26 + φ27 + φ28 − φ29 − φ30)/
√

8

ψ20 = (φ33 − φ34 − φ35 + φ36)/
√

4

ϕ15 = (ψ15/
√

2 + ψ16)/
√

3/2 → 〈HB2
S=2〉 = (4U) . (98)

ϕ16 = (ψ17 + ψ18)/
√

2
ϕ17 = ψ19

}
→ 〈HB2

S=1〉 =
(

5U 0
0 5U

)
. (99)
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ϕ18 = (−2ψ15/
√

2 + ψ16)/
√

3
ϕ19 = (ψ17 − ψ18)/

√
2

ϕ20 = ψ20


 → 〈HB2

S=0〉 =


 4U −6t√

3
0

−6t√
3

5U −2t
0 −2t 6U


 .

(100)
Although ϕ16 and ϕ17 have the same total-spin, not that they happen to be
eigenvectors the Hamiltonian.

B.1.5 E States with S = 0, 1

ψ21 = (φ3 − Iφ4 − φ5 + Iφ6)/2
ψ22 = (φ7 − Iφ8 − φ9 − Iφ10)/2
ψ23 = (φ11 + Iφ12 + φ13 − Iφ14)/2
ψ24 = (φ15 − Iφ16 − φ17 − Iφ18)/2
ψ25 = (φ19 + Iφ20 + φ21 − Iφ22)/2
ψ26 = (φ23 − Iφ24 + φ25 − Iφ26)/2
ψ27 = (φ27 − Iφ28 + φ29 − Iφ30)/2
ψ28 = (φ33 − Iφ34 + Iφ35 − φ36)/2

ϕ21 = ψ21

ϕ22 = (ψ26 + ψ27)/
√

2
ϕ23 = (ψ23 + ψ25)/

√
2

ϕ24 = (ψ22 + ψ24)/
√

2


 → 〈HE

S=1〉 =




4U 0 −2t√
2

2it√
2

0 5U (−1 + i) t (−1 − i) t
−2t√

2
(−1 − i) t 5U 0

−2t√
2

(−1 + i) t 0 5U


 .

(101)
ϕ25 = (−ψ23 + ψ25)/

√
2

ϕ26 = (−ψ22 + ψ24)/
√

2
ϕ27 = (ψ26 − ψ27)/

√
2

ϕ28 = ψ28


 → 〈HE

S=0〉 =




5U 0 (−1 + i) t 2t√
2

0 5U (1 + i) t 2it√
2

(−1 − i) t (1 − i) t 5U 0
2t√
2

−2it√
2

0 6U


 .

(102)
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C Hubbard Package: Mathematica Code

(*
* Description:
*
* Hubbard model package to calculate for small lattice clusters the hamiltonian
* matrix of elements given a list of basis states. The number of sites of the
* cluster in principle is arbitrary, constrained only by computation time.
* Further, the interactions, i.e. the bonds, between sites in the lattice is
* also arbitrary a must be given is a list.
*
* Package also generates a linear combination of basis state by using the C3v
* symmetry group to block diagonalize a Hamiltonian matrix of elements.
* The particles comprising the system are assumed to be fermions, so phase
* changes due to symmetry operations are taken into account.
* This package depends on the Braket operator defined in the Hubbard package.
*
* Version: 1.10
*
*)

BeginPackage["hubbard‘"]

p::usage = "spin up electron"
m::usage = "spin down electron"
d::usage = "double electrons: pm"
e::usage = "empty site"
t::usage = "Hopping kinetic energy"
U::usage = "Intersite Coulomb potential energy"

Z::usage = "Z[state]\n
Symbolic state vector in the number representation"

c::usage = "c[spin, site, Z[state]]\n
Fermion destruction operator for a given spin and site"

c::usage = "c[spin, site, Z[state]]\n
Fermion creation operator for a given spin and site"

number::usage = "number[spin, site, Z[state]] is the number operator"

H::usage = "H[Z[state],bonds]\n
Hubbard hamiltonian applied onto Z[state]
where state is a list of n spins and bonds is a list of all the site interactions.
For example, for a three site lattice, we may let bonds={{1,2},{2,1},{2,3},{3,2},{3,1},{1,3}}.\n
The spin notations for the state is as follows:\n p=up\n m=down\n d=double\n e=empty\n
Then for our three site lattice, a state with total spin=1 may be written: state = {p,p,m}.
Off-site interactions have t as the kinetic energy hopping term and and on-site
interactions have U as the Coulomb term.
The return value is the new state, Z’[state] = H[Z[state],bonds]."

Braket::usage = "Braket[Z[state1], Z[state2]]\n
Takes the dot product of two state vectors.
The second argument, Z[state2] may be any linear combination of basis states."

MatrixElements::usage = "MatrixElements[basis, basis, bonds]\n
Calculates the matrix elements of the Hubbard hamiltonian using a list of general states, basis, and a conjugate list, basis*, al

fermflip::usage = "fermflip[site_A, site_B, Z[state]]\n
General fermionic site interchange operator. Exchanges spins between sites A and B
given any linear combination of basis states."

C3v::usage = "C3v[op, a Z[state] + ... ] is the group operator acting on a general state\n
op = 1 -> E - Identity\n
op = 2 -> C3 - Rotation by 120 degrees\n
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op = 3 -> C3ˆ2 - Rotation by 240 degrees\n
op = 4 -> Sigma1 - Reflection about site 1\n
op = 5 -> Sigma2 - Reflection about site 2\n
op = 6 -> Sigma3 - Reflection about site 3\n
\n
Fermionic particles is assumed.

"
C3vOpMatrix::usage = "C3vOpMatrix[op, basis, basis] generates a matrix for each operation"

C4v::usage = "C4v[op, a Z[state] + ... ] is the group operator acting on a general state\n
op = 1 -> E - Identity\n
op = 2 -> C4 - Rotation by 90 degrees\n
op = 3 -> C2 - Rotation by 180 degrees\n
op = 3 -> C4ˆ3 - Rotation by 270 degrees\n
op = 5 -> Sigma - Reflection about site 1 and site 3\n
op = 6 -> Sigma - Reflection about site 2 and site 4\n
op = 7 -> Sigma - Reflection about vertical\n
op = 8 -> Sigma - Reflection about horizontal\n
\n
Fermionic particles is assumed.

"

C4vOpMatrix::usage = "C4vOpMatrix[op, basis, basis] generates a matrix for each operation"

SS::usage = "SS[Z[state]], where Z[state] may be a general state"

SSMatrix::usage = "SSMatrix[basis, basis] generates a total spin squared matrix given a general basis"

SSij::usage = "SSij[site1, site2, Z] total spin coorelation between two sites"

Begin["‘private‘"]

(**************************************************************
**************************************************************
** **
** Second Quantized Operators **
** and the **
** Hubbard Hamiltonian **
** **
**************************************************************
**************************************************************)

(*
*
* Define basic site-independent creation
* and annihilation operators
*
*)

cp[p] = 0
cp[m] = d
cp[d] = 0
cp[e] = p
cp[0] = 0

cm[p] = d
cm[m] = 0
cm[d] = 0
cm[e] = m
cm[0] = 0

cp[p] = e
cp[m] = 0
cp[d] = m
cp[e] = 0
cp[0] = 0

cm[p] = 0
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cm[m] = e
cm[d] = p
cm[e] = 0
cm[0] = 0

(*
*
* Define the state operator property
*
*)

Z[Z[state_]] := state

(*
*
* Define nulstate to handle Pauli exclusion
* and destruction on the vacuum
*
*)

nulstate = 0

(*
*
* Define basis site and spin specific creation
* and annihilation operators with arbitrary phase
*
*)

c[spin_, site_, phase_:1 Z[state_]] := Block[
{l, lstate, lphase},

lstate = state = Z[Z[state]];
lphase = phase ;

(* Apply anti-commutation upto the indexed site *)
For[l=1, l<site, l++,
If[state[[l]] == p || state[[l]] == m,

lphase *= -1
]
] ;

(* Apply creation/destruction operator of given spin
on the indexed site *)

Switch[spin,
p, lstate[[site]] = cp[state[[site]]] ,

m, If[lstate[[site]] == p, lphase *= -1] ;
lstate[[site]] = cm[state[[site]]]

] ;
Which[ lstate[[site]] == 0, nulstate,
lstate == lstate, lphase Z[lstate]

]
]

c[spin_, site_, phase_:1 Z[state_]] := Block[
{l, lstate, lphase},

lstate = state = Z[Z[state]];
lphase = phase ;

(* Apply anti-commutation upto the indexed site *)
For[l=1, l<site, l++,
If[state[[l]] == p || state[[l]] == m,

lphase *= -1
]
] ;

(* Apply creation/destruction operator of given spin
on the indexed site *)
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Switch[spin,
p, lstate[[site]] = cp[state[[site]]],

m, If[lstate[[site]] == d, lphase *= -1] ;
lstate[[site]] = cm[state[[site]]]

] ;
Which[ lstate[[site]] == 0, nulstate,
lstate == lstate, lphase Z[lstate]

]
]

(*
*
* Handle the case when the state is null
*
*)

c[spin_, index_, nulstate] = nulstate
c[spin_, index_, nulstate] = nulstate

(*
*
* Handle by recursion the case when the given state
* is a linear combination of basis states
*
*)

c[spin_, site_, a_. Z[state_] + b_.] := a c[spin, site, Z[state]] + c[spin, site, b]
c[spin_, site_, a_. Z[state_] + b_.] := a c[spin, site, Z[state]] + c[spin, site, b]

(*
* Handle case when the state is written in factored form
*
*)

c[spin_, site_, Z__] := c[spin, site, Expand[Z]]
c[spin_, site_, Z__] := c[spin, site, Expand[Z]]

(*
* Number of operator with specified spin at a certain site
*)

number[spin_, site_, Z__ ] := c[spin,site, c[spin, site, Z]]
number[spin_, site_, nulstate] = nulstate

(*
* Hubbard hamiltonian for N-sites
*)

H[Z[state_], bonds_] := Block[
{i, j, Zo, lstate, nsites, nbonds},

lstate = Z[Z[state]] ;
nsites = Length[lstate] ;
nbonds = Length[bonds] ;

Zo = 0 ;

For[ i=1, i<=nbonds, i++,
Zo += -t c[m,bonds[[i]][[1]],c[m,bonds[[i]][[2]],Z[state]]] +

-t c[p,bonds[[i]][[1]],c[p,bonds[[i]][[2]],Z[state]]]
] ;

For[ i=1, i<=nsites, i++,
Zo += U number[p,i, number[m,i,Z[state]]]

+ U number[p,i, Z[state]] + U number[m,i,Z[state]]
] ;
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Zo
]

H[a_:1 Z[state_] + b_., bonds_] := a H[Z[state], bonds] + H[b, bonds]
H[nulstate, bonds_] = nulstate

(*
* Recursive definition of state vector orthogonality
* Note: If Braket cannot compute the value it will return Error
*)

SumList[alist_] := Block[{i, sum, size},
sum = 0 ;
size = Length[alist] ;
Do[ sum += alist[[i]], {i,1,size}] ;
If[size==0, Error, sum]
]

Braket [a_:1 Z[s_], b_:1 Z[s_] ] := a b
Braket [a_:1 Z[s1_], b_:1 Z[s2_] ] := 0
Braket [a_:1 Z[s_]/d1_:1 , c_:1 Z[s_]/d2_:1 ] := (a c)/(d1 d2)
Braket [a_:1 Z[s1_]/d1_:1, c_:1 Z[s2_]/d2_:1] := 0

Braket[a_:1 Z[s_], Z2__] := a SumList[Flatten[Outer[Braket,{Z[s]},Level[Collect[Expand[Z2],{Z}],1]]]]
Braket[Z1__, a_:1 Z[s_]] := a SumList[Flatten[Outer[Braket,Level[Collect[Expand[Z1],{Z}],1],{Z[s]}]]]
Braket[Z1__, Z2__] := SumList[Flatten[Outer[Braket,Level[Collect[Expand[Z1],{Z}],1],Level[Collect[Expand[Z2],{Z}],1]]]]

Braket[nulstate, __ ] = nulstate
Braket[__, nulstate] = nulstate
Braket[nulstate, nulstate] = nulstate

(*
* Calculate the matrix of elements using the Hubbard
* hamiltonian and the Braket operator
*)

MatrixElements[basis_, basis_, bonds_] := Block[{i,j, num, ME, M},

num = Length[basis] ;
ME = {};

For[j=1, j<= num, j++,
(* Print["Z[",j,"] = ", basis[[j]] ] ; *)

Print["[",j,"]"] ;
M = {};

Do[ AppendTo[M, Braket[ basis[[j]], H[ basis[[i]] , bonds] ]], {i,1,num}];
AppendTo[ME,M]

];
ME

]

(**************************************************************
**************************************************************
** **
** Site Interchange Operator for Fermions **
** based on Conditional Creation/Annhilation Operators **
** **
**************************************************************
**************************************************************)

(*
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* Occupation operator of a given spin and site.
* Returns 1 if present or 0 if not, and applies only to basis states.
*)

occupy[spin_, site_, Z[state_] ] := number[spin,site,Z[state]]/Z[state]

(*
* Conditional destruction and annihilation operators for given spin and site.
* That is, destruction and annihilation operators apply only if
* occupancy is 1. Equivalent to destruction/annihilation operators raised to
* the power of the occupancy. These operators apply only to basis states.
*)

w[spin_,site_, a_:1 Z[state_] ] := If[occupy[spin,site,Z[state]]==1, c[spin,site, a Z[state]], a Z[state]]
w[spin_,osite_, site_, Z[ostate_], a_:1 Z[state_] ] := If[occupy[spin,osite,Z[ostate]]==1
&& occupy[spin,site,Z[state]]==0,
c[spin,site, a Z[state]], a Z[state]]

(* Spin-independent conditional destruction and annihilation operators.
* These operators apply only to basis states and are defined only
* for convenience to simplify the production rules for the fermionic
* site interchange operators.
*)

ww[site_, a_:1 Z[state_]] := w[p, site, w[m, site, a Z[state]] ]
ww[osite_, site_, Z[ostate_], a_:1 Z[state_]] := w[m, osite, site, Z[ostate], w[p, osite, site, Z[ostate], a Z[state]] ]

(*
* Fermionic site interchange operator. Exchanges spins between osite and site.
* This operator applies only to basis states.
*)

fflip[osite_,site_, a_:1 Z[state_]] := ww[osite, site, Z[state], ww[site, osite, Z[state], ww[site, ww[osite, a Z[state]]] ]]

(*
* General fermionic site interchange operator. Exchanges spins between osite and site
* given any linear combination of basis states.
*)

fermflip[osite_,site_, ss__] := Distribute[fflip[osite,site,ss]]
fermflip[osite_, site_, 0 ] := 0

(**************************************************************
**************************************************************
** **
** Site Interchange Operator for Fermions **
** based on Pendelton’s Operators **
** **
**************************************************************
**************************************************************)

P[spin_, s1_, s2_, Z__] := Z + c[spin,s2, c[spin,s1,Z]] + c[spin,s1, c[spin,s2,Z]] -
c[spin,s1, c[spin,s1,Z]] - c[spin,s2, c[spin,s2,Z]]

fermx[s1_, s2_ , Z__ ] := P[m,s1,s2, P[p,s1,s2,Z] ]

(**************************************************************
**************************************************************
** **
** C3v Group Operators for Fermions **
** **
**************************************************************
**************************************************************)

C3v[op_, Z__] := Block[
{Y},
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Switch[ op,
1,(* E - Identity Operator *)
Y = Z,

2,(* C3 = sigma1 sigma3 - Rotation by 120 degrees *)
Y = fermx[1,2, fermx[2,3,Z] ],

3,(* C3ˆ2 = sigma3 sigma1 - Rotation by 240 degrees *)
Y = fermx[2,3, fermx[1,2,Z] ],

4,(* Sigma1 - Reflection about site 1 *)
Y = fermx[2,3,Z],

5,(* Sigma1 - Reflection about site 2 *)
Y = fermx[3,1,Z],

6,(* Sigma1 - Reflection about site 3 *)
Y = fermx[1,2,Z],
] ;

Y
]

(*
* Generate C3v matrices for each group operation
*)

C3vOpMatrix[op_, basis_, basis_] := Block[
{i,j, num, Row},

num = Length[basis] ;
OpMatrix = {};

For[j=1, j<= num, j++,
Row = {};

Do[ AppendTo[Row, Braket[ basis[[j]], C3v [op, basis[[i]] ] ]], {i,1,num}];
AppendTo[OpMatrix,Row]
] ;
OpMatrix
]

(**************************************************************
**************************************************************
** **
** C4v Group Operators for Fermions **
** **
**************************************************************
**************************************************************)

C4v[op_, Z__] := Block[
{Y},

Switch[ op,
1,(* E - Identity Operator *)
Y = Z,

2,(* C4 - Rotation by 90 degrees *)
Y = fermx[1,2, fermx[2,3, fermx[3,4,Z] ]],

3,(* C4ˆ2 = C2 - Rotation by 180 degrees *)
Y = fermx[1,3, fermx[2,4,Z] ],

4,(* C4ˆ2 - Rotation by 270 degrees *)
Y = fermx[3,4, fermx[2,3, fermx[1,2,Z] ]],

5,(* Sigma - Reflection about site 1 and site 3 *)
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Y = fermx[2,4,Z],

6,(* Sigma - Reflection about site 2 and site 4 *)
Y = fermx[1,3,Z],

7,(* Sigma - Reflection about vertical *)
Y = fermx[1,2, fermx[3,4,Z] ],

8,(* Sigma - Reflection about horizontal *)
Y = fermx[1,4, fermx[2,3,Z] ],
] ;

Y
]

(*
* Generate C4v matrices for each group operation
*)

C4vOpMatrix[op_, basis_, basis_] := Block[
{i,j, num, Row},

num = Length[basis] ;
OpMatrix = {};

For[j=1, j<= num, j++,
Row = {};

Do[ AppendTo[Row, Braket[ basis[[j]], C4v [op, basis[[i]] ] ]], {i,1,num}];
AppendTo[OpMatrix,Row]
] ;
OpMatrix
]

(**************************************************************
**************************************************************
** **
** General Spin Operators **
** **
**************************************************************
**************************************************************)

(*
* Site specific spin operators
*)

sx[site_, Z__] := c[p, site, c[m, site, Z]]/2 + c[m, site, c[p, site, Z]]/2
sy[site_, Z__] := - I c[p, site, c[m, site, Z]]/2 + I c[m, site, c[p, site, Z]]/2
sz[site_, Z__] := c[p, site, c[p, site, Z]]/2 - c[m, site, c[m, site, Z]]/2

(*
* Site-to-site product spin operators: sx * sx , sy * sy, sz * sz
*)

sxsx[site1_, site2_, Z__] := c[p, site1, c[m, site1, c[p, site2, c[m, site2, Z ]]]]/4 +
c[m, site1, c[p, site1, c[m, site2, c[p, site2, Z ]]]]/4 +
c[p, site1, c[m, site1, c[m, site2, c[p, site2, Z ]]]]/4 +
c[m, site1, c[p, site1, c[p, site2, c[m, site2, Z ]]]]/4

sysy[site1_, site2_, Z__] := - c[p, site1, c[m, site1, c[p, site2, c[m, site2, Z ]]]]/4 -
c[m, site1, c[p, site1, c[m, site2, c[p, site2, Z ]]]]/4 +
c[p, site1, c[m, site1, c[m, site2, c[p, site2, Z ]]]]/4 +
c[m, site1, c[p, site1, c[p, site2, c[m, site2, Z ]]]]/4

szsz[site1_, site2_, Z__] := c[p, site1, c[p, site1, c[p, site2, c[p, site2, Z ]]]]/4 -
c[m, site1, c[m, site1, - c[m, site2, c[m, site2, Z ]]]]/4 +
c[p, site1, c[p, site1, - c[m, site2, c[m, site2, Z ]]]]/4 -
c[m, site1, c[m, site1, c[p, site2, c[p, site2, Z ]]]]/4
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(*
* Total spin squared operator
*)

SS[Z[state_]] := Block[
{i, j, nsites, lstate, Zo},

lstate = Z[Z[state]] ;
nsites = Length[lstate] ;
Zo = 0 ;

For[ i=1, i<=nsites, i++,
For[ j=1, j<=nsites, j++,

Zo += sxsx[i,j,Z[state]] + sysy[i,j,Z[state]] + szsz[i,j,Z[state]]
]
] ;

Expand[Zo] ;
Zo

]
SS[a_:1 Z[state_] + b_.] := a SS[Z[state]] + SS[b]
SS[nulstate] = nulstate

(*
* Matrix of total spin squared operator given a general basis
*)

SSMatrix[basis_, basisc_] := Block[{i,j, num, SSE, M, ZY},

num = Length[basis] ;
SSE = {};

For[j=1, j<= num, j++,
(* Print["Z[",j,"] = ", basis[[j]] ] ; *)

Print["[",j,"]"] ;
M = {};

ZY = Expand[ SS[ basis[[j]] ] ] ;
Do[ AppendTo[M, Braket[ basisc[[i]], ZY]], {i,1,num}];

AppendTo[SSE,M]
];

SSE
]

(*
* Total Spin Correlation
*)

SSij[s1_, s2_, Z__] := sxsx[s1,s2,Expand[Z]] + sysy[s1,s2,Expand[Z]] + szsz[s1,s2,Expand[Z]]

End[]

EndPackage[]

Null
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