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Abstract

A quantum algorithm is presented for modeling the time evolution of
a continuous field governed by the nonlinear Burgers equation in one spa-
tial dimension. It is a microscopic-scale algorithm for a type-II quantum
computer, a large lattice of small quantum computers interconnected in
nearest neighbor fashion by classical communication channels. A formula
for quantum state preparation is presented. The unitary evolution is gov-
erned by a conservative quantum gate applied to each node of the lattice
independently. Following each quantum gate operation, ensemble mea-
surements over independent microscopic realizations are made resulting
in a finite-difference Boltzmann equation at the mesoscopic scale. The
measured values are then used to re-prepare the quantum state and one
time step is completed. The procedure of state preparation, quantum
gate application, and ensemble measurement is continued ad infinitum.
The Burgers equation is derived as an effective field theory governing the
behavior of the quantum computer at its macroscopic scale where both
the lattice cell size and the time step interval become infinitesimal. A
numerical simulation of shock formation is carried out and agrees with
the exact analytical solution.
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1 Introduction

This paper presents a quantum algorithm for modeling the nonlinear Burg-
ers equation. This represents a strong numerical test of the modeling utility of
quantum computers because the Burgers equation is a difficult nonlinear partial
differential equation to accurately model without numerical instabilities. Its ap-
plications to turbulence, intermittency, structures in a self-gravitating medium
[1] and shock formation in inelastic gases [2] gives the Burgers equation unique
importance in the field of computational physics. One of the goals of this paper
is to place the question of modeling the Burgers equation into the emerging field
of quantum computational physics.

The quantum algorithm presented here is suited to a type-II quantum com-
puting architecture that is a large array of small quantum computers inter-
connected by classical communication channels [3]. The quantum algorithm is
based on the factorized quantum lattice-gas method, which has been previously
applied to modeling the Navier-Stokes equations of fluid dynamics [4, 5] and the
diffusion equation [6].

Other types of quantum lattice gases appear in the literature, beginning
in the mid 1990’s, by Succi [7, 8], Bialynicki-Birula [9], Meyer [10, 11], and
Boghosian and Taylor [12] to model the relativistic Dirac equation and the
nonrelativisitic Schroedinger equation, and Yepez [13] to model phase-coherent
quantum systems. In contrast, the mesoscopic scale behavior of the factorized
quantum lattice gas presented here is purely classical in nature, even though
the microscopic scale dynamics is quantum mechanical. This is because mea-
surements are made on each qubit of the quantum computer after each and
every application of a local quantum mechanical program independently ap-
plied on each site or node of the system. The usefulness of this approach is
that practical and efficient computation can by carried out at the mesoscopic
scale by an emergent finite-difference Boltzmann transport equation to model
a broad class of effective field theories in an unconditionally stable manner.
The measurement process in effect “factorizes” the collision term in the lattice-
Boltzmann equation so that quantum superpositions and entanglement cannot
spread throughout the quantum computer. This keeps quantum superposition
and entanglement localized within the lattice nodes for a short duration of time
less than the spin-spin decoherence time of the physical system in question.1

In this way, the measurement process mitigates against any uncontrolled deco-
herence mechanisms that would otherwise destroy the phase coherence of the
quantum computer’s wavefunction.

The dynamical evolution of the type-II quantum computer can be described
at three spacetime scales, the microscopic, mesoscopic, and macroscopic scales.

1 Nuclear spins precess at a frequency of ω = geB
mc

about the externally applied magnetic
field B. They can precess in phase with each other only for a characteristic time called the
spin-spin decoherence time and usually denoted by T2. Moreover, the relaxation time usually
denoted T1, which is greater than T2, is the characteristic time required for the spins to relax
back to the energy eigenstates of the two-level spin-system, where these two eigenstates are
populated according to the Boltzmann equilibrium occupancy probabilities.
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At the microscopic scale, all the quantum dynamics occurs on a discrete spatial
lattice. The Hamiltonian of the quantum system is an artificial one; that is, it
is produced by a program of externally applied controls. In effect the naturally
occurring quantum system is coaxed to act like another quantum system on
a discrete lattice with a Hamiltonian of our choosing. One can then describe
the dynamical behavior of the “programmed” quantum system at a mesoscopic
scale. To do this, an ensemble measurement over identical microscopic realiza-
tions is made to determine the occupancy of the two-level energy eigenstates of
each qubit in the system. A scaling estimate for the minimum required ensem-
ble size is given in Appendix A. In this way a discrete field of probabilities is
obtained, one probability per qubit. At this mesoscopic scale, the occupancy
probabilities are defined only on the lattice points, so these probabilities con-
stitute a discrete field of real-valued quantities. A lattice Boltzmann equation
for kinetic transport exactly governs the dynamical evolution of this spatially
discrete probability field.

Finally, to bridge the gap to the macroscopic scale, the occupancy proba-
bilities at each site of the lattice are summed together to determine what is
called a number density field. As the number of lattice points increases towards
an infinite spatial resolution, which is called the continuum limit, the number
density field becomes a continuous and differentiable field. Its dynamical evo-
lution can then be approximately described, to any order of desired precision,
by a partial differential equation of motion. Since this equation of motion is
chosen by construction, for example say it is the Burgers equation, we consider
the type-II quantum computer to be a model of the physical system described
by that equation of motion. In this sense, the microscopic quantum mechanical
system is programmed to act like one particular classical physical system at its
macroscopic scale. Therefore, in essence, we exploit quantum mechanics for the
purpose of efficient analog computation.

The quantum algorithm presented here is the simplest example of using a
quantum computer to solve a one-dimensional nonlinear partial differential equa-
tion. To do this, only two qubits are needed at each node of the type-II quantum
computer and a single quantum gate is simultaneously and independently ap-
plied to all the nodes. In general, to solve nonlinear partial differential equations
in two and three-dimensional, more than two qubits per node is required. The
minimum number of qubits required for various nonlinear systems, including the
Burgers equation, in two and three-dimensions is presently unknown. Further-
more, to correctly and accurately model complex three-dimensional dynamical
systems to handle the nonlinear motions of singular boundaries, such as arise
in shock fronts, phase and species interfaces, and the like, than many hundreds
or thousands of bits may be required per site.2 Since the number of particle

2 It is possible to estimate the number of qubits required per node based on the bit density
of classical lattice-gas models since they are a special case of quantum lattice-gas models. For
the Navier-Stokes equation, 6 and 24 bits are needed in two and three-dimensions, respectively,
in single speed models of incompressible subsonic flow [14, 15]. To repair anomalies, such as
a lack of Galilean invariance, many additional bits are needed to encode the occupancy of
a particle and this causes the bit density to be multiplied [16]. If many-speed models are
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configurations grows exponentially in the number of on-site bits, implementing
the collision process on a classical computer quickly becomes intractable for
complicated models.

A speedup due to quantum parallelism is a salient characteristic of a type-
II quantum computer despite the periodic measurement process. This speedup
occurs even though the quantum mechanical superposition of states is restricted
to only a sub-manifold of the full Hilbert space. With a type-II quantum com-
puter, in principle, it is possible to gain a speedup because the computational
work required to implement the collision process is order unity in certain cases.
This is possible because the Hamiltonian (say an Ising spin system with nearest
neighbor interaction) governing the evolution of a node conserves certain quan-
tities, such as the total magnetization along an external applied uniform mag-
netic field. In the quantum lattice-gas model presented in this paper, the total
magnetization is mapped on to a field quantity that is governed by the Burg-
ers equation in the continuum limit. Therefore, once the appropriate quantum
state preparation is completed on each node of the type-II quantum computer,
only one unitary transformation step is needed before the quantum state of each
qubit is measured. By refocusing two-spin interactions in a nuclear magnetic
resonance quantum computer [23], the collision process can therefore be effi-
ciently computed. Other conserved quantities of the on-site Hamiltonian may
be mapped to recover the macroscopic-scale evolution of additional field quan-
tities. For example, the square of the total spin may be mapped on a conserved
local momentum vector to recover nonlinear hydrodynamic flow.

2 Factorized Quantum Lattice-Gas Algorithm

2.1 Step 1: Computational Memory State Encoding

Consider a one-dimensional lattice with L sites. Each site of the lattice is
labeled by a coordinate xl, where l = 1, . . . , L. To model the Burgers equation,
we use two qubits physically located at each site of the lattice. Note that in
this case of only two qubits per node, an exponential speedup of the algorithm
implemented on a type-II quantum computer versus a classical computer would
not be realized [6]. To realize the exponential speedup, many more than two
qubit per node is required. Therefore, this quantum algorithm is simply a test
case, and to exploit quantum efficiency one must consider a generalized two or
three-dimensional version of the algorithm presented here.

considered for compressible subsonic flow, the required number bits per node are doubled or
tripled [17]. To handle compressible transonic and supersonic flows, many additional bits are
necessary to handle the large distance advections of local flows [18]. Furthermore, to handle
multiphase fluids, additional bits are required to communicate long-range inter-particle forces
[19]. An efficient implementation of a multiphase fluid requires doubling the bit density
as a hydrodynamic lattice-gas model is generalized to a multiphase hydrodynamic model.
That is, for every bit in the original model encoding a particle’s occupancy, an additional
messenger bit is added to handle the long-range force that acts on that particle [20]. The bit
density also doubles as one adds another species, as is done in models of immiscible fluids and
microemulsions [21] or reactive systems [22].
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With two qubits per node, there are a total 2L qubits in the type-II quantum
computer. These qubits are denoted by the ket |qa(xl, t◦)〉, where a = 1, 2. The
computational memory state of the type-II quantum computer is encoded in the
quantum wave function, |Ψ(x1, x2, . . . , xL, t◦)〉, in a particular fashion described
here. First of all, it is important to note that the quantum wave function of a
type-II quantum computer is always expressible in tensor product form

|Ψ(x1, x2, . . . , xL, t◦)〉 =
L⊗

l=1

|ψ(xl, t◦)〉. (1)

The ket |ψ(xl, t◦)〉 is called the on-site ket. In general, with b qubits per node,
the computational manifold is L2b-dimensional, which is a small faction of the
full 2Lb-dimensional Hilbert space when the number of lattice sites L is large. In
our present case with b = 2 qubits per site, the computational manifold is of size
L22. Each on-site ket resides in a 22-dimensional subspace of the computational
manifold.

Let us choose the following four basis states in the number representation

|00〉 =




0
0
0
1


 |01〉 =




0
0
1
0


 |10〉 =




0
1
0
0


 |11〉 =




1
0
0
0


 . (2)

In this basis, the number operators for the occupancy of qubits |q1〉 and |q2〉 are
respectively represented by the following two matrices

n̂1 =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 n̂2 =




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 . (3)

We are now in a position to say how the computational memory state of the
type-II quantum computer is encoded in |Ψ(x1, x2, . . . , xL, t◦)〉. This is specified
by a list of 2L probabilities, one probability value for each qubit. Each proba-
bility value is supposed to be a continuous real numbered quantity in the range
of 0 to 1. In practice however, each probability value can only be approximately
represented within the dynamical range physically allowable by the technique
used to embody a qubit, for example using the spin state of an atomic nucleus
[24, 25] or the state of a fluxon that entered a superconducting quantum inter-
ference device through a Josephson junction [26, 27].3 The probability value
encoded in each qubit is called the occupancy probability and it is denoted by
fa(xl, t◦) for the ath qubit at site xl at time t◦.

3 The issue of the achievable dynamical range of physical qubits for encoding probabilities
is under study in our laboratory and by our collaborators for the two different cases of type-
II quantum computers employing either the nuclear magnetic resonance or superconducting
electronics approaches.
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Each qubit initially encodes the occupancy probability according to the fol-
lowing prescription

|qa(xl, t◦)〉 =
√

fa(xl, t◦)|1〉 +
√

1 − fa(xl, t◦)|0〉, (4)

for l = 1, 2, . . . , L and a = 1, 2. Equation (4) represents the first step of the
quantum lattice-gas algorithm.4 This is called state preparation and defines the
way we write data to the type-II quantum computer’s memory. Since initially
each on-site ket is a tensor product over the qubits at the site, |ψ〉 = |q1〉⊗ |q2〉,
the on-site ket therefore has the following four components in our chosen basis

|ψ(xl, t◦)〉 =
√

f1(xl, t◦)f2(xl, t◦)|11〉 +
√

f1(xl, t◦)(1 − f2(xl, t◦))|10〉 + (5)√
(1 − f1(xl, t◦))f2(xl, t◦)|01〉 +

√
(1 − f1(xl, t◦))(1 − f2(xl, t◦))|00〉.

In this construction of the on-site ket, the qubits are considered to be distin-
quishable.5

The “number density” field is defined as the sum of the occupancy probabil-
ities

ρ(xl, t◦) ≡ f1(xl, t◦) + f2(xl, t◦). (6)

The number density field is a spatially discrete field in that it has a value only
on the discrete sites of a lattice. However, we may consider the number density
field to be a continuous and differentiable field in the continuum limit where
the number of lattice sites becomes infinite, L → ∞ for a lattice of fixed size.
The best justification for this consideration comes directly from numerical sim-
ulations of the number density field. It is possible to numerically measure the
convergence property of a predicted numerical behavior of the model by com-
paring it with the exact analytical solution of the partial differential equation
the system is supposed to model [6]. As the grid resolution is doubled again and
again, it has been observed that the quantum lattice-gas model converges with
better than second order accuracy in space and first order accuracy in time to
the exact solution [6]. In fact, in a phase-coherent for model of the many-body
Schroedinger wave equation, the quantum lattice-gas method is fourth order ac-
curate in space [28]. This high degree of accuracy is not typical of time-explicit
dynamical models where the field values at some time step are computed with
only knowledge of the field values at the previous time step. The reason for
the high-degree of accuracy arises from the fact that the collision process in a
unitary one and the resulting mesoscopic kinetic transport equations obey the
principle of detailed-balance.

4 Note that in general the quantum state of a qubit is determined by three real parameters,
an overall phase factor, plus two “Euler” angles specifying its orientation on the unit Bloch
sphere, |q〉 = eiϕ

(
cos θ|1〉 + eiε sin θ|0〉

)
. In our case, the overall phase factor, ϕ, and the

internal phase factor, ε, are not used and we simply set fa = cos2 θ.
5 In the case where the on-site qubits are indistinguishable and fermionic in character, then

one must keep track of the the “internal” location of the individual qubits within each node
to ensure that the on-kit is antisymmetric. In our present case with two qubits per node,
say the qubits are located at the internal locations y1 and y2. Then, the on-site ket would
be intialized as |ψ〉 = [|q1〉(y1) ⊗ |q2(y2)〉 − |q1(y2)〉 ⊗ |q2(y1)〉]/√2. In the general case, with
more than two qubits per node, a Slater determinant would be used to determine the signs of
all the terms contributing to the antisymmetric on-site ket.
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2.2 Step 2: Unitary Quantum Evolution

It is necessary to make a clear distinction between the actual microscopic scale
evolution of the type-II quantum computer, which is governed by unitary quan-
tum mechanical evolution, and the effective mesoscopic scale evolution of the
type-II quantum computer system, which is non-unitary. The unitary quantum
mechanical evolution is determined by a program of externally applied controls
(for example, a sequence radio-frequency pulses in the case of an NMR-based
quantum computer) so that the phase-coherent part of the evolution is governed
by a quantum wave equation of a particularly chosen form

|ψ′(xl, t◦)〉 = Û |ψ(xl, t◦)〉. (7)

The chosen unitary evolution matrix, Û , is called the collision operator and it is
applied to each lattice site independently causing local quantum superposition
and entanglement of the on-site qubits. In general, Û is decomposable into a
sequence of two-qubit quantum gates [29]. Application of the collision operator,
homogeneously and independently across all the lattice sites, is the second step
of the quantum lattice-gas algorithm. In practice, the time taken to run the
collision operator program must be on the order of the T2 spin-spin decoherence
time of the physical system in questions. In the case of the nuclear magnetic
resonance type-II quantum computer, T2 is on the order of 1 second. The choice
of the particular components of Û determines the form of the partial differential
equation the quantum lattice-gas can model as shall be demonstrated in §5. In
the context of (7) viewed as a collisional scattering process, the ket |ψ〉 is called
the incoming ket and the ket |ψ′〉 is called the outgoing ket.

2.3 Step 3: Measurement

The third step of the quantum lattice-gas algorithm is to measure (that is, to
“read”) all the occupancy probabilities. This measurement process is a non-
unitary action that destroys all the superpositions and entanglements that may
have been caused locally at each site of the lattice by application of Û . Mathe-
matically, we can express the occupation probabilities in terms of the following
matrix element of the number operator

f ′
a(xl, t◦) = 〈ψ′(xl, t◦)|n̂a|ψ′(xl, t◦)〉, (8)

for a = 1, 2. The updated values of the occupation probabilities, f ′
a, as indicated

by the prime superscript, are determined by either repeated measurement or by
a single measurement over a statistical ensemble, or both.

2.4 Step 4: Global Data Shifts Using Classical Communi-
cation Channels

The fourth step of the quantum lattice-gas algorithm is to shift all the occupancy
probability data obtained from the measurement process to their neighboring
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sites as follows
fa(xl, t1) = f ′

a(xl+ea , t◦), (9)

where e1 = 1 and e2 = −1. Notice that after this step, we consider time
to be incremented by one unit τ = t1 − t◦ This step requires only classical
communication between neighboring nodes and is traditionally called particle
streaming in the literature on classical lattice-gas dynamics [14, 15].

The final step, which loops back to the first step of the quantum lattice-gas
algorithm, is to reprepare (that is, to “write” once again) the quantum state
of the computer according to the prescription (4). Then, we have the updated
value of each qubit expressed in terms of the updated values of the occupation
probabilities

|q′
a(xl, t◦)〉 =

√
f ′

a(xl+ea , t◦)|1〉 +
√

1 − f ′
a(xl+ea , t◦)|0〉. (10)

Setting the updated value of each qubit equal to the value of the qubit at the
later time incremented by one unit, |q(xl, t1)〉 ≡ |q′(xl, t◦)〉, this final step of the
algorithm is equivalently expressed as

|qa(xl, t1)〉 =
√

fa(xl, t1)|1〉 +
√

1 − fa(xl, t1)|0〉. (11)

As just mentioned, this is identical to the first step of the algorithm given in
(4), except that |qa〉 is evaluated at the incremented time. In this way, we
can continue to iterate forward in time, indefinitely, and make a time-history
recording of the occupation probabilities encoded in all the |qa〉, which in turn,
gives us the temporal evolution of the number density field.

According to the quantum algorithmic four-step procedure, the superposi-
tion of states spreads within a lattice cell size � = ||xl − xl+ea || entangling
only on-site qubits and persists for a duration not greater than update time
τ = t1 − t◦. In practice, in the simplest implementation of the algorithm, this
unit of time τ is on the order of the T1 spin relaxation time of the physical system
in questions because this is the time interval needed before state reparation can
begin. In the case of the nuclear magnetic resonance type-II quantum computer,
T1 is on the order of 10 seconds. If T1 
 T2, this imposes an inefficiency on
the type-II quantum computer architecture since much time would be expended
waiting for the system to relax back to equilibrium, during which time no useful
computation is performed. There are two ways to resolve this inefficiency. First,
one can use physical systems were T1 is greater but on the order of T2. Second,
if T1 
 T2, which is applicable to the NMR case, a “reverse” program could be
run to “quickly” force the system to return back to equilibrium. This second
solution would only be practical if the original program for the collision opera-
tor, the measurement step, and the reverse program, could all be accomplished
within a single T2 time period.

3 Quantum Lattice-Boltzmann Equation

All the algorithmic steps described in the previous section can be encapsulated
mathematically in a single finite-difference equation which combines the collision
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and streaming operations as well as the measurement process, expressed as a
matrix element, as follows

fa(xl+ea
, tn+1) = fa(xl, tn) + 〈ψ(xl, tn)|Û†n̂aÛ − n̂a|ψ(xl, tn)〉, (12)

for l = 1, 2, . . . , L, for n = 0, 1, 2, . . ., and for a = 1, 2. This finite-difference
equation is called the quantum lattice-Boltzmann equation. It is an exact rep-
resentation of the factorized quantum lattice-gas dynamics at the mesoscopic
scale. The collision term, the last term on the right hand side of (12), can be
simplified and written explicitly in terms of the occupation probabilities fa. To
model the Burgers equation, we choose a collision operator that conserves the
total on-site occupancy, also refered to as the particle number in the literature
on lattice gases. That is, of the four basis states enumerated in (2), the collision
operator may entangle the first and second qubits at each site by causing a
superposition of the states |01〉 and |10〉. Therefore, a general representation of
the collision operator is a block diagonal matrix, a single U(2) quantum gate

Û =




1 0 0 0
0 eiφeiξ cos θ eiφeiζ sin θ 0
0 −eiφe−iζ sin θ eiφe−iξ cos θ 0
0 0 0 ±1


 . (13)

Note that the plus or minus sign of the last component of unitary collision matrix
accounts for whether or not the on-site qubits are bosonic (+1) or fermionic (-1)
in character [13], but otherwise has no bearing on the resulting kinetic transport
equations. Substituting (3) and (13) into (12) gives us explicit update rules for
the probability occupancies

f ′
1 = f1f2 +

∥∥∥eiξ cos θ
√

f1(1 − f2) + eiζ sin θ
√

(1 − f1)f2

∥∥∥2
(14)

f ′
2 = f1f2 +

∥∥∥−e−iζ sin θ
√

f1(1 − f2) + e−iξ cos θ
√

(1 − f1)f2

∥∥∥2
, (15)

where the double vertical bars denote the norm or absolute value of the enclosed
quantity. After some algebraic manipulation, this pair of equations can be
reduced to the standard form

f ′
a = fa + Ωa, (16)

where the collision term, Ωa, is

Ωa = − sin2 θ[fa(1−fa+1)−(1−fa)fa+1]+sin 2θ cos(ζ−ξ)
√

fa(1 − fa)fa+1(1 − fa+1),
(17)

for a = 1, 2. Note that in (17) we use the convention that the subscript of the
occupation probability is taken modulo 2; that is, fa = fmod2(a). The quan-
tum lattice-Boltzmann equation expressed in (16) has the traditional form of
a kinetic lattice-Boltzmann equation often used in the literature on the classi-
cal lattice gases. However, as seen in (17), other than the dependence of the
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Euler angles, there appears an unusual dependence on the square root of the
occupation probabilities. This type of additional term is a consequence of the
microscopic scale quantum nature of the model that remains clearly evident
at the mesoscopic scale where (17) is well-defined, even though our quantum
algorithm requires periodic and homogenous measurement of all qubits in the
computer. In fact, it is just this term that will give rise to non-linearity in the
macroscopic equation of motion and that will allow us to model the Burgers
equation as we shall demonstrate in §5.

4 Local Equilibrium

Before we derive an effective field theory for the macroscopic scale behavior
of our factorized quantum lattice-gas system, it is first necessary to establish
the form of the local equilibrium occupancy probabilities, f eq

a . By definition,
we know that the collision term (17) must vanish at local equilibrium. For
convenience, let us denote the equilibrium occupancy probabilities by d1 ≡ f eq

1
and d2 ≡ f eq

2 . Then the equilibrium condition Ωa = 0 is equivalent to

sin2 θ [d1(1 − d2) − (1 − d1)d2] = sin 2θ cos(ζ − ξ)
√

d1(1 − d1)d2(1 − d2). (18)

This may be rewritten in what may be called detailed-balance form by dividing
the left and right hand sides of the above equation by d1(1−d1)d2(1−d2) giving

d1

1 − d1
− d2

1 − d2
= 2 cot θ cos(ζ − ξ)

√
d1

1 − d1

d2

1 − d2
. (19)

Our basic approach is that the equilibrium occupancy probabilities can be pa-
rameterized in the following way

d1 =
1

eβE1 + 1
and d2 =

1
eβE2 + 1

. (20)

Letting βE + ln γ ≡ βE1 and E − ln γ ≡ βE2, we can write

d1 =
1

γeβE + 1
and d2 =

1
1
γ e

βE + 1
. (21)

Expressed in terms of E and γ, the equilibrium condition (19) then becomes

1
γ
e−βE − γe−βE = 2 cot θ cos(ζ − ξ)e−βE , (22)

which simplifies to the following quadratic equation

γ2 + 2 cot θ cos(ζ − ξ)γ − 1 = 0. (23)

We take the positive root for our solution so that d1 and d2 in turn are positive

γ =
√

cot2 θ cos2(ζ − ξ) + 1 − cot θ cos(ζ − ξ). (24)
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For convenience, let us label the trigonometric factor α ≡ cot θ cos(ζ − ξ). Then
we have

γ =
√

α2 + 1 + α and
1
γ

=
√

α2 + 1 − α. (25)

Now the equilibrium number density ρ = d1 + d2 gives us the following relation
between ρ, γ, and the fugacity eβE

ρ =
1

γeβE + 1
+

1
1
γ e

βE + 1
. (26)

After some algebraic manipulation, this can be rewritten as a quadratic equation
in the fugacity

ρe2βE +
(
γ +

1
γ

)
(ρ − 1)eβE + ρ − 2 = 0. (27)

The solutions are

eβE =
1
2

(
γ +

1
γ

)
1 − ρ

ρ
± 1

ρ

√
1
4

(
γ +

1
γ

)2

(1 − 2ρ + ρ2) − ρ2 + 2ρ. (28)

Now from (25) we see that
(
γ + 1

γ

)
= 2

√
α2 + 1. Taking the positive root of

(28), we then have

eβE =
1 − ρ

ρ

√
α2 + 1 +

1
ρ

√
(α2 + 1)(1 − 2ρ + ρ2) − ρ2 + 2ρ. (29)

We had to take the positive root to be consistent with the classical case where
the only possible collision term is Ωa = −fa(1 − fa+1) + (1 − fa)fa+1, which is
deterministic. The classical collision term corresponds to the case in the quan-
tum lattice-gas model (17) where α = 0. In the classical case, the occupation
probabilities must be equal, so ρ = 2d = 2

eβE+1 , which in turn means that
eβE = 1−ρ

ρ + 1
ρ . This is consistent with expression (29).

Given the solution (29), we in turn may express the equilibrium probability
of occupancies in terms of the number density. That is, substituting (29) into
(21), and after performing some algebraic reduction, we have

d1 =
ρ

2
+

1
2α

√
α2 + 1 − 1

2α

√
(α2 + 1) − 2α2ρ + α2ρ2

d2 =
ρ

2
− 1

2α

√
α2 + 1 +

1
2α

√
(α2 + 1) − 2α2ρ + α2ρ2. (30)

Therefore, in the quantum lattice-gas model, the equilibrium occupancy proba-
bilities are not equal, except for the two trivial cases where the number density
is either completely empty ρ = 0 or completely full ρ = 2. This characteristic
of non-equal occupations, while satisfying a detail-balance condition (19), is a
characteristic unique to quantum lattice-gas models. This is not possible with
any kind of classical lattice-gas model with strictly local interactions.

11



5 The Burgers Equation

We can explicitly rewrite the mesoscopic transport equation (16) as

f ′
1 = f1 cos2 θ + f2 sin2 θ + sin 2θ cos(ζ − ξ)

√
f1(1 − f1)f2(1 − f2)

f ′
2 = f1 sin2 θ + f2 cos2 θ − sin 2θ cos(ζ − ξ)

√
f1(1 − f1)f2(1 − f2),

(31)

where for brevity the dependence on xl and tn of each occupancy probability is
omitted. Using these strictly local transport equations, we can derive an effective
field theory that accurately and precisely describes the dynamical behavior of
our quantum lattice-gas model at the macroscopic scale.

We begin our derivation with the simplest case where deviation of the quan-
tum occupancy probabilities are close to the classical value f eq

a 
 ρ
2 , for a = 1, 2.

From the equilibrium solutions (30), we see that the system approaches the
classical regime when the trigonometric factor α is small. To calculate a finite-
difference expression for the number density, we must express the number den-
sity field at the new incremented time tn+1

ρ(xl, tn+1) = f1(xl, tn+1)|f1� ρ
2

+ f2(xl, tn+1)|f2� ρ
2
, (32)

in terms of the number density field evaluated at the previous time tn. This can
be accomplished by substituting the equilibrium values into (31) to give us

f ′
1(xl, tn) =

ρ(xl, tn)
2

+ sin 2θ cos(ζ − ξ)
ρ(xl, tn)

2

(
1 − ρ(xl, tn)

2

)

f ′
2(xl, tn) =

ρ(xl, tn)
2

− sin 2θ cos(ζ − ξ)
ρ(xl, tn)

2

(
1 − ρ(xl, tn)

2

)
.

(33)

Using the streaming rule (9), we can rewrite these two update equation as

f1(xl, tn+1) =
ρ(xl+1, tn)

2
+ sin 2θ cos(ζ − ξ)

ρ(xl+1, tn)
2

(
1 − ρ(xl+1, tn)

2

)

f2(xl, tn+1) =
ρ(xl−1, tn)

2
− sin 2θ cos(ζ − ξ)

ρ(xl−1, tn)
2

(
1 − ρ(xl−1, tn)

2

)
.

(34)

Now substituting these expressions into (32), after some algebraic simplifications
we have the following governing nonlinear finite-difference equation

ρ(xl, tn+1) − ρ(xl, tn) =
1
2

[ρ(xl+1, tn) − 2ρ(xl, tn) + ρ(xl−1, tn)] (35)

+
1
2

sin 2θ cos(ζ − ξ) [ρ(xl+1, tn) − ρ(xl−1, tn)]

−1
4

sin 2θ cos(ζ − ξ)
[
ρ(xl+1, tn)2 − ρ(xl−1, tn)2

]
,

12



where ρ(xl, tn) has been substracted from both the left and right hand sides.
Note that (35) embodies an explicit numerical scheme because all the terms on
the R.H.S. depend only on tn.

In the continuum limit where the lattice spacing and the update time both
approach zero, the number density field becomes continuous and differentiable.
Then the L.H.S. of the governing difference equation becomes the first par-
tial derivative with respect to time, the first term on the R.H.S. becomes one-
half the second partial derivative of the number density filed with respect to
space, and the second term on the R.H.S. becomes proportional to the first
partial derivative with respect to space. The last term on the R.H.S. is a
bit more difficult to interpret by inspection in the continuum limit, but nev-
ertheless is straightforward to evaluate. We use the expansion ρ(x ± δx) 

ρ(x)2 ± 2ρ(x)∂ρ(x)

∂x δx +
[

∂ρ(x)
∂x

]2
δx2 to evaluate this last term, and then it fol-

lows that the governing difference equation (35) approximates the following
nonlinear partial differential equation in the continuum limit

∂ρ(x, t)
∂t

+ c sin 2θ cos(ζ − ξ) [ρ(x, t) − 1]
∂ρ(x, t)

∂x
=

1
2
�

τ

∂2ρ(x, t)
∂x2 . (36)

This is the nonlinear Burgers equation.

6 Numerical Simulation
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Figure 1: A plot of the occupancy probabilities of the two on-site qubits versus the
number density at that site. The upper curve is feq

1 and the lower curve is feq
2 as specified

by (38). In a quantum lattice gas, the occupancy probabilities can be different while the
system nevertheless obeys a detailed-balance condition. The abscissa and ordinate are both
non-dimensional probability values.
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If we choose the “Euler” angles in (13) to be φ = 0, θ = π
4 , ξ = ζ, then the

general collision operator reduces the quantum gate

Û =




1 0 0 0
0 1√

2
1√
2

0
0 − 1√

2
1√
2

0
0 0 0 ±1


 . (37)

In this particular case, the equilibrium occupations are

f eq
a =

ρ

2
+

ea√
2

[
1 −

√
1 −

(ρ

2

) (
1 − ρ

2

)]
, (38)

and are plotted in Figure 1. The mesoscopic transport equation (16) reduces to
the simpler form

f ′
1 = f1 − 1

2
[f1(1 − f2) − (1 − f1)f2] +

√
f1(1 − f1)f2(1 − f2)

f ′
2 = f2 +

1
2

[f1(1 − f2) − (1 − f1)f2] −
√

f1(1 − f1)f2(1 − f2),

(39)

and macroscopic equation of motion (36) reduces to the following parabolic
partial differential equation

∂ρ

∂t
+ c

∂

∂x

(
ρ − ρ2

2

)
=

�2

2τ
∂2ρ

∂x2 . (40)

Setting u ≡ c(ρ − 1), we then have the Burgers equation in standard form

∂u

∂t
− u

∂u

∂x
= ν

∂2u

∂x2 , (41)

where ν = �2

2τ is the transport coefficient.6

To test the prediction that the macroscopic scale behavior of the quantum
lattice-gas model is governed by the Burgers equation (41), one may compare the
results of the numerical simulation to an exact solution obtained by analytical
means. In a different context, this type of comparison was done by Boghosian
and Levermore in 1987 when they tested the accuracy and efficiency of their
classical lattice-gas model of the Burgers equation [31]. The presentation in
this section follows their numerical test procedure. For the purposes of the
numerical test, the system is simulated directly at the mesoscopic scale using
(39), and initialized with a sinusoidal profile in the number density field

ρ(xl, 0) = ρa cos
(

2πl
L

)
+ ρb, (42)

6 It is possible to add an external noise term into the right-hand side of the Burgers
equation (41) of the form ∂η(x,t)

∂x
. We define the potential field h(x, t) as follows: ∂h(x,t)

∂x
≡

u(x, t). Then h(x, t) satisfies the Kardar-Parisi-Zhang equation [30].

14



where ρa = 0.4 and ρb = 1, and L = 256. A time history of the dynamical
evolution of the the number density field is plotted in blue in Figure 2.

An analytical solution of the Burgers equation can be obtained by application
of the Cole-Hopf transformation

ρ = ρa +
2ν
cψ

∂ψ

∂x
, (43)

where

ψ ≡ I0(z) + 2
∞∑

�=1

(−1)Floor[�/2]I�(z)f�(2π�x + ν�t)e−µ�t, (44)

and where z ≡ cρb

4πν , µ� ≡ ν(2π�)2, ν� ≡ c(ρa − 1)(2π�), the I�’s are modified
Bessel functions, and the function f� denotes the sine or cosine function when �
is odd or even, respectively,

f�(x) ≡ (−1)� + 1
2

cos(x) − (−1)� − 1
2

sin(x). (45)

To match the numerical simulation, the parameters in the analytical solution
(44) were set to c = L = 256 and ν = 1

2 . The agreement between the numerical
prediction and the analytical solution is excellent, as shown in Figure 2. There
is a slight discrepancy between the two results after the shock front has fully
developed in the number density field. The discrepancy occurs at the corners or
edges of the shock. The analytical solution appears to be smoother across the
shock front than the numerical solution. To plot the analytical solution, it was
not possible to include all terms in the series expansion (44) from � = 1 up to
� = ∞. Instead, an accurate approximation was made where the first 80 terms
in the expansion (44) were used. The numerical error incurred by truncating
the expansion in this way is less than the round-off error of the least significant
bit of a double-precision floating-point representation, and therefore does not
account for the observed discrepancy at the edges of the shock front.

7 Conclusion

This paper presented a factorized quantum lattice-gas algorithm for modeling
the nonlinear Burgers equation. The quantum algorithm was developed for
direct implementation on a type-II quantum computer and is primarily intended
for that purpose. All algorithmic steps were enumerated. A derivation of the
mesoscopic scale transport equation, a quantum lattice-Boltzmann equation,
was presented, as was a derivation of the macroscopic scale effective field theory
governing the number density field. A general parabolic and nonlinear partial
differential equation, in the form of the Burgers equation, was the predicted
governing equation of motion. The results of a numerical simulation of the
model were then presented along with a comparison to the exact analytical
solutions for the problem of shock formation given an initial sinusoid profile
in the number density field. The agreement of the analytical predictions to the
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Figure 2: Development of a shock front in the number density field after the system was
initialized with a sinusoidal profile on a L = 256 site lattice. Agreement between the numerical
data (blue curve) and the analytical solution (red) curve is apparent. However, the analytical
solution appears to depart from the numerical solution at later times when a steep shock front
is fully formed. The edges of the analytical solution are smooth compared to the sharp edges
of the numerical simulation.
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numerically predicted solutions was excellent confirming the analytically derived
effective theory is indeed the correct one.

The efficiency of the factorized quantum lattice-gas algorithm is significantly
better than its classical lattice-gas algorithm counterpart when judged strictly
on classical numerical modeling grounds and when both algorithms are imple-
mented on the same general purpose computer (such as a desktop personal com-
puter).7 The classical lattice-gas algorithm for the Burgers equation was one
of the first classical lattice-gas algorithms ever presented [31] that was carefully
tested against an exact analytical solution to the partial differential equation
the lattice-gas system was supposed to model. In the case of the classical lattice-
gas model, significant computational resources were expended to observe shock
formation. That is, to obtain reasonably accurate mesoscopic data in the classi-
cal lattice-gas model, course-grain averaging over blocks of size 512 lattice sites
was required. The entire lattice size for the classical lattice-gas model required
a rather large simulation space of 65536 sites, and the characteristic time for
shock formation was on the order of 218 = 262144 time steps. In contrast, the
quantum lattice-gas model reproduced a cleaner approximation of the dynami-
cal formation of the shock using a small lattice of only 256 sites in less than 256
time steps. This substantial reduction in required computational resources was
possible because the mesoscopic transport equations could be accurately mod-
eled directly on a classical computer in a numerically unconditionally stable
fashion that obeyed the principle of detailed-balance.

It is possible to apply the quantum lattice-gas algorithmic method to multi-
dimensional situations. In two and three dimensions, it is possible to recover the
nonlinear convective term associated with the Burgers equation. However, in
this situation, there also appears a pressure term, so the resulting macroscopic
partial differential equation is the Navier-Stokes equations. If an inter-particle
potential is applied (by using non-local collisions), in principle it would be pos-
sible to cancel the gradient pressure term and therefore recover the Burgers
equation in two or three dimensions. It is presently an open question as to
whether or not it is possible to recover the Burgers equation in two or three
dimensions by using only local particle collisions.

7 The finite-difference lattice-Boltzmann equation (39) is suited to standard general pur-
pose computers with floating-point arithmetic processors, a computational resource not needed
by the classical lattice-gas algorithm, so the claim for improved computational efficiency of the
lattice-Boltzmann method over the classical lattice-gas method could be made stronger. Using
special-purpose hardware such as the CAM-8 machine [32], with a total cost of all its simple
components no more costly than the components in a conventional personal computer, it is
possible to speed up the execution of classical lattice-gas models by several orders of magni-
tude. Yet even this degree of speedup does not give a competitive advantage to hydrodynamic
classical lattice-gas algorithms (of which the Burgers equation is a special case) running on
special purpose hardware [33]. However, it has been demonstrated that the lattice-Boltzmann
method is a competitive computational fluid dynamics solver, for example, when compared
with the spectral method [34].
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A Scaling Estimate for the Minimum Ensemble
Size

We can estimate the minimum number of repeated measurements that are re-
quired to evaluate the occupancy probabilities to a sufficient precision for the
quantum lattice-gas to accurately model turbulent hydrodynamic flow. The
argument begins with the following principle: there is equivalence between en-
semble averaging over independent replicas and coarse-grain block averaging
over space. In an NMR quantum computer implementation of a type-II quan-
tum computer, one would use ensemble averaging to evaluate the occupation
probabilities and not coarse-grain averaging. However, we know that the total

number of nodes, n, needed in a single coarse-grain block scales as n ∼ Re
1
2

M2 ,
where Re is the Reynolds number and M is the Mach number [33]. By the
equivalence principle, we will therefore require n replicas to comprise our en-
semble. The total number of cells, L3, needed to resolve a three-dimensional
turbulent eddy down to the dissipation scale goes as L3 ∼ Re

9
4 [33]. Therefore,

the minimum size of the ensemble can be expressed as n ∼ L
2
3

M2 . For a turbulent
simulation with a Reynolds number of a million, then the ensemble size should
be much greater than about 105, given a small Mach number of about one tenth.
This is not too large of an ensemble size to make the type-II quantum compu-
tation impractical. Furthermore, simulating the Navier-Stokes equation in its
turbulence regime is more difficult than simulating shock formation governed
by the Burgers equation.
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